[1] |
Feng X, McDonald JM. Disorders of bone remodeling[J]. Annu Rev Pathol, 2011, 6: 121-145.
doi: 10.1146/annurev-pathol-011110-130203
pmid: 20936937
|
[2] |
Haga RB, Ridley AJ. Rho GTPases: Regulation and roles in cancer cell biology[J]. Small GTPases, 2016, 7(4): 207-221.
pmid: 27628050
|
[3] |
Etienne-Manneville S, Hall A. Rho GTPases in cell biology[J]. Nature, 2002, 420(6916): 629-635.
doi: 10.1038/nature01148
|
[4] |
Razzouk S, Lieberherr M, Cournot G. Rac-GTPase, osteoclast cytoskeleton and bone resorption[J]. Eur J Cell Biol, 1999, 78(4): 249-255.
doi: 10.1016/S0171-9335(99)80058-2
pmid: 10350213
|
[5] |
Bromley M, Woolley DE. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint[J]. Arthritis Rheum, 1984, 27(9): 968-975.
doi: 10.1002/art.v27:9
URL
|
[6] |
Tella SH, Gallagher JC. Biological agents in management of osteoporosis[J]. Eur J Clin Pharmacol, 2014, 70(11): 1291-1301.
doi: 10.1007/s00228-014-1735-5
pmid: 25204309
|
[7] |
Krzeszinski JY, Wan YH. New therapeutic targets for cancer bone metastasis[J]. Trends Pharmacol Sci, 2015, 36(6): 360-373.
doi: 10.1016/j.tips.2015.04.006
pmid: 25962679
|
[8] |
Teitelbaum SL. The osteoclast and its unique cytoskeleton[J]. Ann N Y Acad Sci, 2011, 1240: 14-17.
doi: 10.1111/nyas.2011.1240.issue-1
URL
|
[9] |
张蓉, 田宗成, 商澎. 破骨细胞伪足小体的结构和功能[J]. 中国细胞生物学学报, 2012, 34(2): 179-184.
|
[10] |
Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia[J]. Physiol Rev, 1996, 76(3): 839-885.
pmid: 8757790
|
[11] |
Morwenna S, Ratcliffe WP. Mammalian oxygen sensing and hypoxia inducible factor-1[J]. Int J Biochem Cell Biol, 1997, 29(12): 1419-1432.
doi: 10.1016/S1357-2725(97)00129-5
URL
|
[12] |
Wenger RH, Gassmann M. Oxygen(es) and the hypoxia-inducible factor-1[J]. Biol Chem, 1997, 378(7): 609-616.
pmid: 9278140
|
[13] |
Semenza GL. Hypoxia-inducible factor 1 and the molecular physiology of oxygen homeostasis[J]. J Lab Clin Med, 1998, 131(3): 207-214.
pmid: 9523843
|
[14] |
Kolar P, Gaber T, Perka C, et al. Human early fracture hematoma is characterized by inflammation and hypoxia[J]. Clin Orthop Relat Res, 2011, 469(11): 3118-3126.
doi: 10.1007/s11999-011-1865-3
URL
|
[15] |
Ridley AJ, Paterson HF, Johnston CL, et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling[J]. Cell, 1992, 70(3): 401-410.
doi: 10.1016/0092-8674(92)90164-8
pmid: 1643658
|
[16] |
宋瑞龙. OPG对破骨细胞分化过程中细胞骨架的影响及其分子机理[D]. 扬州: 扬州大学, 2014.
|
[17] |
Croke M, Ross FP, Korhonen M, Williams DA, et al. Rac deletion in osteoclasts causes severe osteopetrosis[J]. J Cell Sci, 2011, 124(Pt 22): 3811-3821.
doi: 10.1242/jcs.086280
pmid: 22114304
|
[18] |
Turcotte S, Desrosiers RR, Béliveau R. HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma[J]. J Cell Sci, 2003, 116(Pt 11): 2247-2260.
pmid: 12697836
|
[19] |
Du J, Xu R, Hu ZZ, et al. PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells[J]. PLoS One, 2011, 6(9): e25213.
doi: 10.1371/journal.pone.0025213
URL
|
[20] |
Güntert T, Gassmann M, Ogunshola OO. Temporal Rac1–HIF-1 crosstalk modulates hypoxic survival of aged neurons[J]. Brain Res, 2016, 1642: 298-307.
doi: S0006-8993(16)30154-8
pmid: 27018294
|
[21] |
Weidemann A, Breyer J, Rehm M, et al. HIF-1α activation results in actin cytoskeleton reorganization and modulation of Rac-1 signaling in endothelial cells[J]. Cell Commun Signal, 2013, 11(1): 80.
doi: 10.1186/1478-811X-11-80
|
[22] |
Hirota K, Semenza GL. Rac1 activity is required for the activation of hypoxia-inducible factor 1[J]. J Biol Chem, 2001, 276(24): 21166-21172.
doi: 10.1074/jbc.M100677200
pmid: 11283021
|
[23] |
Lu CY, Saless N, Wang XD, et al. The role of oxygen during fracture healing[J]. Bone, 2013, 52(1): 220-229.
doi: 10.1016/j.bone.2012.09.037
pmid: 23063782
|