[1] |
El-Naggar AK, Chan JKC, Grandis JR, et al. WHO classification of head and neck[M]. 2017, International Agency for Research on Cancer, 2017: 159-183.
|
[2] |
Skálová A, Stenman G, Simpson RHW, et al. The role of molecular testing in the differential diagnosis of salivary gland carcinomas[J]. Am J Surg Pathol, 2018, 42(2): e11-e27.
doi: 10.1097/PAS.0000000000000980
URL
|
[3] |
Persson M, Andrén Y, Mark J, et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck[J]. Proc Natl Acad Sci USA, 2009, 106(44):18740-18744.
doi: 10.1073/pnas.0909114106
pmid: 19841262
|
[4] |
Han J, Zhang CY, Gu T, et al. Analysis of clinicopathological characteristics, MYB rearrangement and prognostic factors in salivary adenoid cystic carcinoma[J]. Oncol Lett, 2019, 17(3): 2915-2922.
|
[5] |
Togashi Y, Dobashi A, Sakata S, et al. MYB and MYBL1 in adenoid cystic carcinoma: diversity in the mode of genomic rearrangement and transcripts[J]. Mod Pathol, 2018, 31(6): 934-946.
doi: 10.1038/s41379-018-0008-8
URL
|
[6] |
Brayer KJ, Frerich CA, Kang HN, et al. Recurrent fusions in MYB and MYBL1 define a common, transcription factor-driven oncogenic pathway in salivary gland adenoid cystic carcinoma[J]. Cancer Discov, 2016, 6(2): 176-187.
doi: 10.1158/2159-8290.CD-15-0859
pmid: 26631070
|
[7] |
Mitani Y, Liu B, Rao PH, et al. Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations[J]. Clin Cancer Res, 2016, 22(3): 725-733.
doi: 10.1158/1078-0432.CCR-15-2867-T
pmid: 26631609
|
[8] |
Ho AS, Ochoa A, Jayakumaran G, et al. Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma[J]. J Clin Invest, 2019, 129(10): 4276-4289.
doi: 10.1172/JCI128227
pmid: 31483290
|
[9] |
Kang H, Tan M, Bishop JA, et al. Whole-exome sequencing of salivary gland mucoepidermoid carcinoma[J]. Clin Cancer Res, 2017, 23(1): 283-288.
doi: 10.1158/1078-0432.CCR-16-0720
pmid: 27340278
|
[10] |
Bishop JA, Cowan ML, Shum CH, et al. MAML2 rearrangements in variant forms of mucoepidermoid carcinoma: Ancillary diagnostic testing for the ciliated and Warthin-like variants[J]. Am J Surg Pathol, 2018, 42(1): 130-136.
doi: 10.1097/PAS.0000000000000932
pmid: 28877061
|
[11] |
Bell D, Ferrarotto R, Liang L, et al. Pan-Trk immunohistochemistry reliably identifies ETV6-NTRK3 fusion in secretory carcinoma of the salivary gland[J]. Virchows Arch, 2020, 476(2): 295-305.
doi: 10.1007/s00428-019-02640-7
|
[12] |
Rooper LM, Karantanos T, Ning Y, et al. Salivary secretory carcinoma with a novel ETV6-MET fusion: expanding the molecular spectrum of a recently described entity[J]. Am J Surg Pathol, 2018, 42(8): 1121-1126.
doi: 10.1097/PAS.0000000000001065
pmid: 29683815
|
[13] |
Black M, Liu CZ, Onozato M, et al. Concurrent identification of novel EGFR-SEPT14 fusion and ETV6-RET fusion in secretory carcinoma of the salivary gland[J]. Head Neck Pathol, 2020, 14(3): 817-821.
doi: 10.1007/s12105-019-01074-6
pmid: 31502214
|
[14] |
Guilmette J, Dias-Santagata D, Nosé V, et al. Novel gene fusions in secretory carcinoma of the salivary glands: Enlarging the ETV6 family[J]. Hum Pathol, 2019, 83: 50-58.
doi: S0046-8177(18)30316-2
pmid: 30130630
|
[15] |
Skálová A, Banečkova M, Thompson LDR, et al. Expanding the molecular spectrum of secretory carcinoma of salivary glands with a novel VIM-RET fusion[J]. Am J Surg Pathol, 2020, 44(10): 1295-1307.
doi: 10.1097/PAS.0000000000001535
pmid: 32675658
|
[16] |
Sasaki E, Masago K, Fujita S, et al. Salivary secretory carcinoma harboring a novel ALK fusion: Expanding the molecular characterization of carcinomas beyond the ETV6 gene[J]. Am J Surg Pathol, 2020, 44(7): 962-969.
doi: 10.1097/PAS.0000000000001471
pmid: 32205481
|
[17] |
Sun JJ, Wang LZ, Tian Z, et al. Higher Ki67 index, nodal involvement, and invasive growth were high risk factors for worse prognosis in conventional mammary analogue secretory carcinom[J]. J Oral Maxillofac Surg, 2019, 77(6): 1187-1202.
doi: 10.1016/j.joms.2019.01.002
URL
|
[18] |
Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. N Engl J Med, 2018, 378(8): 731-739.
doi: 10.1056/NEJMoa1714448
URL
|
[19] |
Laetsch TW, DuBois SG, Mascarenhas L, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study[J]. Lancet Oncol, 2018, 19(5): 705-714.
doi: S1470-2045(18)30119-0
pmid: 29606586
|
[20] |
Liu DZ, Offin M, Harnicar S, et al. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors[J]. Ther Clin Risk Manag, 2018, 14: 1247-1252.
doi: 10.2147/TCRM
URL
|
[21] |
Hsieh MS, Wang H, Lee YH, et al. Reevaluation of MAML2 fusion-negative mucoepidermoid carcinoma: a subgroup being actually hyalinizing clear cell carcinoma of the salivary gland with EWSR1 translocation[J]. Hum Pathol, 2017, 61: 9-18.
doi: 10.1016/j.humpath.2016.06.029
URL
|
[22] |
Sebastiao APM, Xu B, Lozada JR, et al. Histologic spectrum of polymorphous adenocarcinoma of the salivary gland harbor genetic alterations affecting PRKD genes[J]. Mod Pathol, 2020, 33(1): 65-73.
doi: 10.1038/s41379-019-0351-4
URL
|
[23] |
Skálová A, Gnepp DR, Lewis JS Jr, et al. Newly described entities in salivary gland pathology[J]. Am J Surg Pathol, 2017, 41(8): e33-e47.
doi: 10.1097/PAS.0000000000000883
URL
|
[24] |
Palicelli A. Intraductal carcinomas of the salivary glands: Systematic review and classification of 93 published cases[J]. APMIS, 2020, 128(3): 191-200.
doi: 10.1111/apm.13009
pmid: 31697865
|
[25] |
Skálová A, Vanecek T, Uro-Coste E, et al. Molecular profiling of salivary gland intraductal carcinoma revealed a subset of tumors harboring NCOA4-RET and novel TRIM27-RET fusions: a report of 17 cases[J]. Am J Surg Pathol, 2018, 42(11):1445-1455.
doi: 10.1097/PAS.0000000000001133
pmid: 30045065
|
[26] |
Skálová A, Ptáková N, Santana T, et al. NCOA4-RET and TRIM27-RET are characteristic gene fusions in salivary intraductal carcinoma, including invasive and metastatic tumors: is "intraductal" correct[J]. Am J Surg Pathol, 2019, 43(10):1303-1313.
doi: 10.1097/PAS.0000000000001301
pmid: 31162284
|
[27] |
Lu H, Graham RP, Seethala R, et al. Intraductal carcinoma of salivary glands harboring TRIM27-RET fusion with mixed low grade and apocrine types[J]. Head Neck Pathol. 2020, 14(1):239-245.
doi: 10.1007/s12105-018-0996-1
pmid: 30610524
|
[28] |
Weinreb I, Bishop JA, Chiosea SI, et al. Recurrent RET gene rearrangements in intraductal carcinomas of salivary gland[J]. Am J Surg Pathol, 2018, 42(4): 442-452.
doi: 10.1097/PAS.0000000000000952
pmid: 29443014
|
[29] |
Rooper LM, Thompson LDR, Gagan J, et al. Salivary intraductal carcinoma arising within intraparotid lymph node: A report of 4 cases with identification of a novel STRN-ALK fusion[J]. Head Neck Pathol, 2020.
|
[30] |
Bishop JA, Gagan J, Krane JF, et al. Low-grade apocrine intraductal carcinoma: expanding the morphologic and molecular spectrum of an enigmatic salivary gland tumor[J]. Head Neck Pathol, 2020, 14(4): 869-875.
doi: 10.1007/s12105-020-01128-0
|
[31] |
Haller F, Bieg M, Will R, et al. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands[J]. Nat Commun, 2019, 10(1): 368.
doi: 10.1038/s41467-018-08069-x
pmid: 30664630
|
[32] |
Haller F, Skálová A, Ihrler S, et al. Nuclear NR4A3 immunostaining is a specific and sensitive novel marker for acinic cell carcinoma of the salivary glands[J]. Am J Surg Pathol, 2019, 43(9):1264-1272.
doi: 10.1097/PAS.0000000000001279
pmid: 31094928
|
[33] |
Andreasen S, Varma S, Barasch N, et al. The HTN3-MSANTD3 fusion gene defines a subset of acinic cell carcinoma of the salivary gland[J]. Am J Surg Pathol, 2019, 43(4):489-496.
doi: 10.1097/PAS.0000000000001200
pmid: 30520817
|
[34] |
Urano M, Nakaguro M, Yamamoto Y, et al. Diagnostic significance of HRAS mutations in epithelial-myoepithelial carcinomas exhibiting a broad histopathologic spectrum[J]. Am J Surg Pathol, 2019, 43(7):984-994.
doi: 10.1097/PAS.0000000000001258
pmid: 30994537
|
[35] |
Bishop JA, Westra WH. MYB translocation status in salivary gland epithelial-myoepithelial carcinoma: Evaluation of classic, variant, and hybrid forms[J]. Am J Surg Pathol, 2018, 42(3): 319-325.
doi: 10.1097/PAS.0000000000000990
pmid: 29135517
|
[36] |
Agaimy A, Fonseca I, Martins C, et al. NUT carcinoma of the salivary glands: Clinicopathologic and molecular analysis of 3 cases and a survey of NUT expression in salivary gland carcinomas[J]. Am J Surg Pathol, 2018, 42(7): 877-884.
doi: 10.1097/PAS.0000000000001046
pmid: 29649019
|
[37] |
Rooper LM, Jo VY, Antonescu CR, et al. Adamantinoma-like Ewing sarcoma of the salivary glands: A newly recognized mimicker of basaloid salivary carcinomas[J]. Am J Surg Pathol, 2019, 43(2): 187-194.
doi: 10.1097/PAS.0000000000001171
pmid: 30285997
|
[38] |
Bishop JA, Alaggio R, Zhang L, et al. Adamantinoma-like Ewing family tumors of the head and neck: A pitfall in the differential diagnosis of basaloid and myoepithelial carcinomas[J]. Am J Surg Pathol, 2015, 39(9): 1267-1274.
doi: 10.1097/PAS.0000000000000460
pmid: 26034869
|