[1] Larsson C. The interface between bone and implants with different surface oxide properties[J]. Appl Osseointegration Res, 2000(1): 9-14.
[2] Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits[J]. Clin Implant Dent Relat Res, 2000, 2(3): 70-77.
[3] Sul YT, Johansson CB, Albrektsson T. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone[J]. Int J Oral Maxillofac Implants, 2002, 17(5):625-634.
[4] Li LH, Kong YM, Kim HW, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation[J]. Biomaterials, 2004, 25(14): 2867-2875.
[5] Cho SA, Jung SK. A removal torque of the laser-treated titanium implants in rabbit tibia[J]. Biomaterials, 2003, 24(26): 4859-4863.
[6] 郭泽鸿, 容明灯, 朱安棣, 等. 含种植体硬组织骨计量学不脱钙塑料包埋技术[J]. 广东医学, 2008, 29(3): 385-386.
[7] Hall J, Miranda-Burgos P, Sennerby L. Stimulation of directed bone growth at oxidized titanium implants by macroscopic grooves: an in vivo study[J]. Clin Implant Dent Relat Res, 2005, 7(1): S76-82.
[8] Bobyn JD, Pilliar RM, Cameron HU, et al. The optimum pore size for the fixation of porous surfaced metal implants by ingrowth of bone[J]. Clin Orthop Relat Res, 1980, (150): 263-270.
[9] Hulbert SF, Young FA, Mathews RS, et al. Potential of ceramic materials as permanently implantable skeletal prostheses[J]. J Biomed Mater Res, 1970, 4(3): 433-456.
[10] Itala AI, Ylanen HO, Ekholm C, et al. Pore diameter of more than 100 mm is not requisite for bone ingrowth in rabbits[J]. J Biomed Mater Res, 2000, 58(6): 679-683.
[11] Kong L, Ao Q, Wang A, et al. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering [J]. J Biomater Appl, 2007, 22(3): 223-239.
[12] Hertz A, Bruce IJ. Inorganic materials for bone repair or replacement applications [J]. Nanomed, 2007, 2(6): 899-918.
[13] Guo Z, Zhou L, Rong M, et al. Bone Augmentation in a Titanium cap with a porous surface modified by microarc oxidation[J]. Int J Oral Maxillofac Implants, 2013, 28(3):767-773.
[14] Han Y, Hong SH, Xu KW. Synthesis of nanocrystalline titania films by micro-arc oxidation[J]. Materials Letters, 2002, 56(5): 744-747.
[15] Song WH, Jun YK, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania[J]. Biomaterials, 2004, 25(17): 3341-3349.
[16] 郭泽鸿, 周磊. 钛种植体表面微弧氧化膜的生物改性研究进展[J]. 口腔颌面外科杂志, 2007, 17(4): 362-365.
[17] Huang P, Zhang Y, Xu K, et al. Surface modification of titanium implant by microarc oxidation and hydrothermal treatment[J]. J Biomed Mater Res B Appl Biomater, 2004, 70(2): 187-190.
[18] Nasatzky E, Gultchin J, Schwartz Z. The role of surface roughness in promoting osteointegration[J]. Refuat Hapeh Vehashinayim, 2003, 20(3): 8-19. |