[1] Greenwald AS1, Boden SD, Goldberg VM, et al. Bone-graft substitutes: facts, fictions, and applications[J]. J Bone Joint Surg Am, 2001, 83-A Suppl 2 Pt 2:98-103.. [2] Zocca A, Elsayed H, Bernardo E, et al. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder[J]. Biofabrication, 2015, 7(2):025008. [3] Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg 1996,35(5):413-417. [4] Döbelin N, Luginbühl R, Bohner M. Synthetic calcium phosphate ceramics for treatment of bone fractures[J]. Chimia (Aarau), 2010, 64(10):723-729 [5] Zielak J C, Mathias A L, Da S R, et al. Oral tissue response to ovine grafting biomaterial: morphological and morphometric study using scanning electron and light microscopy tissue response to ovine grafting biomaterial[J]. Microsc Res Tech, 2012, 75(10):1395-1401. [6] Välimäki VV, Aro HT. Molecular basis for action of bioactive glasses as bone graft substitute[J]. Scand J Surg, 2006, 95(2):95-102. [7] Kaur G, Pandey O P, Singh K, et al. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation[J]. J Biomed Mater Res A, 2014, 102(1):254-274. [8] Rahaman M N, Day D E, Bal B S, et al. Bioactive glass in tissue engineering[J]. Acta Biomaterialia, 2011, 7(6):2355-2373. [9] Bejarano J, Detsch R, Boccaccini A R, et al. PDLLA scaffolds with Cu-and Zn-doped bioactive glasses having multifunctional properties for bone regeneration[J]. J Biomed Mater Res A, 2017, 105(3):746-756. [10] Zhang W, Zhao F, Huang D, et al. Strontium-substituted sub-micron bioactive glasses modulate macrophage responses for improved bone regeneration[J]. Acs Appl Mater Interfaces, 2016, 8(45):30747-30758. [11] Schmitz J P, Hollinger J O. The critical size defect as an experimental model for craniomandibulofacial nonunions[J]. Clin Orthop Relat Res, 1986, (205):299-308.
|