[1] |
唐君仪, 周冠楠, 谢志芳. 转录因子SOX9调控软骨发育的研究进展[J]. 医学研究杂志, 2013, 42(9): 19-20, 164.
|
[2] |
胡向荣, 杨文君, 吴翔燕, 等. SOX9和CDX2在结直肠癌中的表达[J]. 中国中西医结合外科杂志, 2011, 17(6): 564-567.
|
[3] |
Matsushita M, Kitoh H, Kaneko H, et al. A novel SOX9 H169Q mutation in a family with overlapping phenotype of mild campomelic dysplasia and small Patella syndrome[J]. Am J Med Genet A, 2013, 161A(10): 2528-2534.
doi: 10.1002/ajmg.a.36134
pmid: 24038782
|
[4] |
Gordon CT, Tan TY, Benko S, et al. Long-range regulation at the SOX9 locus in development and disease[J]. J Med Genet, 2009, 46(10): 649-656.
doi: 10.1136/jmg.2009.068361
pmid: 19473998
|
[5] |
Lecointre C, Pichon O, Hamel A, et al. Familial acampomelic form of campomelic dysplasia caused by a 960 kb deletion upstream of SOX9[J]. Am J Med Genet A, 2009, 149A(6): 1183-1189.
doi: 10.1002/ajmg.a.32830
pmid: 19449405
|
[6] |
Leipoldt M, Erdel M, Bien-Willner GA, et al. Two novel translocation breakpoints upstream of SOX9 define Borders of the proximal and distal breakpoint cluster region in campomelic dysplasia[J]. Clin Genet, 2007, 71(1): 67-75.
doi: 10.1111/j.1399-0004.2007.00736.x
pmid: 17204049
|
[7] |
Benko S, Gordon CT, Mallet D, et al. Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development[J]. J Med Genet, 2011, 48(12): 825-830.
doi: 10.1136/jmedgenet-2011-100255
pmid: 22051515
|
[8] |
Benko S, Fantes JA, Amiel J, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence[J]. Nat Genet, 2009, 41(3): 359-364.
doi: 10.1038/ng.329
pmid: 19234473
|
[9] |
Gibcus JH, Dekker J. The hierarchy of the 3D genome[J]. Mol Cell, 2013, 49(5): 773-782.
doi: 10.1016/j.molcel.2013.02.011
pmid: 23473598
|
[10] |
Franke M, Ibrahim DM, Andrey G, et al. Formation of new chromatin domains determines pathogenicity of genomic duplications[J]. Nature, 2016, 538(7624): 265-269.
doi: 10.1038/nature19800
|
[11] |
Despang A, Schöpflin R, Franke M, et al. Functional dissection of the SOX9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture[J]. Nat Genet, 2019, 51(8): 1263-1271.
doi: 10.1038/s41588-019-0466-z
pmid: 31358994
|
[12] |
Furlong EEM, Levine M. Developmental enhancers and chromosome topology[J]. Science, 2018, 361(6409): 1341-1345.
doi: 10.1126/science.aau0320
pmid: 30262496
|
[13] |
陈少坚, 郭风劲. SOX9基因促软骨形成作用机制研究进展[J]. 国际骨科学杂志, 2010, 31(2): 65-67.
|
[14] |
Yao BJ, Wang QQ, Liu CF, et al. The SOX9 upstream region prone to chromosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers[J]. Nucleic Acids Res, 2015, 43(11): 5394-5408.
doi: 10.1093/nar/gkv426
pmid: 25940622
|
[15] |
Mochizuki Y, Chiba T, Kataoka K, et al. Combinatorial CRISPR/Cas9 approach to elucidate a far-upstream enhancer complex for tissue-specific Sox9 expression[J]. Dev Cell, 2018, 46(6): 794-806
doi: S1534-5807(18)30635-X
pmid: 30146478
|
[16] |
Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head[J]. Nat Rev Neurosci, 2003, 4(10): 806-818.
doi: 10.1038/nrn1221
pmid: 14523380
|
[17] |
Mori-Akiyama Y, Akiyama H, Rowitch DH, et al. SOX9 is required for determination of the chondrogenic cell lineage in the cranial neural crest[J]. Proc Natl Acad Sci USA, 2003, 100(16): 9360-9365.
doi: 10.1073/pnas.1631288100
pmid: 12878728
|
[18] |
Benko S, Fantes JA, Amiel J, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence[J]. Nat Genet, 2009, 41(3): 359-364.
doi: 10.1038/ng.329
pmid: 19234473
|
[19] |
Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development[J]. Nat Genet, 1994, 6(4): 348-356.
doi: 10.1038/ng0494-348
pmid: 7914451
|
[20] |
Cai JL, Ash D, Kotch LE, et al. Gene expression in pharyngeal arch 1 during human embryonic development[J]. Hum Mol Genet, 2005, 14(7): 903-912.
pmid: 15703188
|
[21] |
Gordon CT, Attanasio C, Bhatia S, et al. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence[J]. Hum Mutat, 2014, 35(8): 1011-1020.
doi: 10.1002/humu.22606
pmid: 24934569
|
[22] |
Bagheri-Fam S, Barrionuevo F, Dohrmann U, et al. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal SOX9 expression pattern[J]. Dev Biol, 2006, 291(2): 382-397.
pmid: 16458883
|
[23] |
Koopman P, Gubbay J, Vivian N, et al. Male development of chromosomally female mice transgenic for Sry[J]. Nature, 1991, 351(6322): 117-121.
doi: 10.1038/351117a0
|
[24] |
Vidal VP, Chaboissier MC, de Rooij DG, et al. SOX9 induces testis development in XX transgenic mice[J]. Nat Genet, 2001, 28(3): 216-217.
doi: 10.1038/90046
pmid: 11431689
|
[25] |
Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific SOX9 enhancer[J]. Nature, 2008, 453(7197): 930-934.
doi: 10.1038/nature06944
|
[26] |
Gonen N, Quinn A, O'Neill HC, et al. Normal levels of Sox9 expression in the developing mouse testis depend on the TES/TESCO enhancer, but this does not act alone[J]. PLoS Genet, 2017, 13(1)
|
[27] |
Gonen N, Futtner CR, Wood S, et al. Sex reversal following deletion of a single distal enhancer of SOX9[J]. Science, 2018, 360(6396): 1469-1473.
doi: 10.1126/science.aas9408
pmid: 29903884
|
[28] |
Croft B, Ohnesorg T, Hewitt J, et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9[J]. Nat Commun, 2018, 9(1): 5319.
doi: 10.1038/s41467-018-07784-9
pmid: 30552336
|
[29] |
Bai XF, Shi SS, Ai B, et al. ENdb: a manually curated database of experimentally supported enhancers for human and mouse[J]. Nucleic Acids Res, 2020, 48(D1): 51-57.
doi: 10.1093/nar/gkz973
pmid: 31665430
|
[30] |
Frazer KA, Pachter L, Poliakov A, et al. VISTA: Computational tools for comparative genomics[J]. Nucleic Acids Res, 2004, 32(Web Server issue): w273-w279.
|