[1] |
毛映, 赵绿扬, 龙洁. 人工智能技术在口腔颌面部X线及计算机断层扫描影像图像处理中的应用[J]. 口腔颌面外科杂志, 2022, 32(2): 125-128.
doi: 10.3969/j.issn.1005-4979.2022.02.010
URL
|
[2] |
毕小琴, 赵佛容. 人工智能技术在口腔专科治疗及护理中的应用[J]. 华西口腔医学杂志, 2018, 36(4): 452-456.
|
[3] |
Lee J, Park J, Moon SY, et al. Automated prediction of extraction difficulty and inferior alveolar nerve injury for mandibular third molar using a deep neural network[J]. Appl Sci, 2022, 12(1): 475.
|
[4] |
Orhan K, Bilgir E, Bayrakdar IS, et al. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans[J]. J Stomatol Oral Maxillofac Surg, 2021, 122(4): 333-337.
doi: 10.1016/j.jormas.2020.12.006
pmid: 33346145
|
[5] |
Vinayahalingam S, Xi T, Bergé S, et al. Automated detection of third molars and mandibular nerve by deep learning[J]. Sci Rep, 2019, 9(1): 9007.
doi: 10.1038/s41598-019-45487-3
pmid: 31227772
|
[6] |
Vranckx M, van Gerven A, Willems H, et al. Artificial intelligence (AI)-driven molar angulation measurements to predict third molar eruption on panoramic radiographs[J]. Int J Environ Res Public Health, 2020, 17(10): 3716.
|
[7] |
Celik ME. Deep learning based detection tool for impacted mandibular third molar teeth[J]. Diagnostics, 2022, 12(4): 942.
|
[8] |
Kwak GH, Kwak EJ, Song JM, et al. Automatic mandibular canal detection using a deep convolutional neural network[J]. Sci Rep, 2020, 10(1): 5711.
doi: 10.1038/s41598-020-62586-8
pmid: 32235882
|
[9] |
Jaskari J, Sahlsten J, Järnstedt J, et al. Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes[J]. Sci Rep, 2020, 10(1): 5842.
doi: 10.1038/s41598-020-62321-3
pmid: 32245989
|
[10] |
Liu MQ, Xu ZN, Mao WY, et al. Deep learning-based evaluation of the relationship between mandibular third molar and mandibular canal on CBCT[J]. Clin Oral Investig, 2022, 26(1): 981-991.
|
[11] |
Sukegawa S, Matsuyama T, Tanaka F, et al. Evaluation of multi-task learning in deep learning-based positioning classification of mandibular third molars[J]. Sci Rep, 2022, 12(1): 684.
doi: 10.1038/s41598-021-04603-y
pmid: 35027629
|
[12] |
Choi E, Lee S, Jeong E, et al. Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography[J]. Sci Rep, 2022, 12(1): 2456.
doi: 10.1038/s41598-022-06483-2
pmid: 35165342
|
[13] |
Zhu TE, Chen DQ, Wu FL, et al. Artificial intelligence model to detect real contact relationship between mandibular third molars and inferior alveolar nerve based on panoramic radiographs[J]. Diagnostics, 2021, 11(9): 1664.
|
[14] |
Patel PS, Shah JS, Dudhia BB, et al. Comparison of panoramic radiograph and cone beam computed tomography findings for impacted mandibular third molar root and inferior alveolar nerve canal relation[J]. Indian J Dent Res, 2020, 31(1): 91-102.
doi: 10.4103/ijdr.IJDR_540_18
pmid: 32246689
|
[15] |
Sarikov R, Juodzbalys G. Inferior alveolar nerve injury after mandibular third molar extraction: A literature review[J]. J Oral Maxillofac Res, 2014, 5(4): e1.
|
[16] |
Yoo JH, Yeom HG, Shin W, et al. Deep learning based prediction of extraction difficulty for mandibular third molars[J]. Sci Rep, 2021, 11(1): 1954.
|
[17] |
Kim BS, Yeom HG, Lee JH, et al. Deep learning-based prediction of paresthesia after third molar extraction: A preliminary study[J]. Diagnostics, 2021, 11(9): 1572.
|
[18] |
Zhang W, Li J, Li ZB, et al. Predicting postoperative facial swelling following impacted mandibular third molars extraction by using artificial neural networks evaluation[J]. Sci Rep, 2018, 8(1): 12281.
doi: 10.1038/s41598-018-29934-1
pmid: 30115957
|