[1] |
Walsh MC, Kim N, Kadono Y, et al. Osteoimmunology: Interplay between the immune system and bone metabolism[J]. Annu Rev Immunol, 2006, 24: 33-63.
pmid: 16551243
|
[2] |
Tsukasaki M, Takayanagi H. Osteoimmunology: Evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol, 2019, 19(10): 626-642.
doi: 10.1038/s41577-019-0178-8
pmid: 31186549
|
[3] |
Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems[J]. Physiol Rev, 2017, 97(4): 1295-1349.
doi: 10.1152/physrev.00036.2016
pmid: 28814613
|
[4] |
Arron JR, Choi Y. Bone versus immune system[J]. Nature, 2000, 408(6812): 535-536.
|
[5] |
Shanbhag S, Shanbhag V, Stavropoulos A. Genomic analyses of early peri-implant bone healing in humans: A systematic review[J]. Int J Implant Dent, 2015, 1(1): 5.
pmid: 27747627
|
[6] |
张文静, 王亚楠, 徐欣. 种植体骨结合中生物学过程与分子调控机制的研究进展[J]. 口腔颌面修复学杂志, 2021, 22(1): 66-70.
|
[7] |
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials[J]. Semin Immunol, 2008, 20(2): 86-100.
doi: 10.1016/j.smim.2007.11.004
pmid: 18162407
|
[8] |
Albrektsson T, Wennerberg A. On osseointegration in relation to implant surfaces[J]. Clin Implant Dent Relat Res, 2019, 21(Suppl 1): 4-7.
|
[9] |
Albrektsson T, Tengvall P, Amengual L, et al. Osteoimmune regulation underlies oral implant osseointegration and its perturbation[J]. Front Immunol, 2022, 13: 1056914.
|
[10] |
Zhou AQ, Yu H, Liu JY, et al. Role of hippo-YAP signaling in osseointegration by regulating osteogenesis, angiogenesis, and osteoimmunology[J]. Front Cell Dev Biol, 2020, 8: 780.
doi: 10.3389/fcell.2020.00780
pmid: 32974339
|
[11] |
Salvi GE, Bosshardt DD, Lang NP, et al. Temporal sequence of hard and soft tissue healing around titanium dental implants[J]. Periodontol 2000, 2015, 68(1): 135-152.
doi: 10.1111/prd.12054
pmid: 25867984
|
[12] |
Amengual-Peñafiel L, Córdova LA, Constanza Jara-Sepúlveda M, et al. Osteoimmunology drives dental implant osseointegration: A new paradigm for implant dentistry[J]. Jpn Dent Sci Rev, 2021, 57: 12-19.
|
[13] |
Wu JW, Tian Y, Wang HW, et al. The role of TAK1 in RANKL-induced osteoclastogenesis[J]. Calcif Tissue Int, 2022, 111(1): 1-12.
|
[14] |
Rahnama-Hezavah M, Mertowska P, Mertowski S, et al. How can imbalance in oral microbiota and immune response lead to dental implant problems?[J]. Int J Mol Sci, 2023, 24(24): 17620.
|
[15] |
Banu Raza F, Vijayaragavalu S, Kandasamy R, et al. Microbiome and the inflammatory pathway in peri-implant health and disease with an updated review on treatment strategies[J]. J Oral Biol Craniofac Res, 2023, 13(2): 84-91.
doi: 10.1016/j.jobcr.2022.11.005
pmid: 36504486
|
[16] |
Alves CH, Russi KL, Rocha NC, et al. Host-microbiome interactions regarding peri-implantitis and dental implant loss[J]. J Transl Med, 2022, 20(1): 425.
doi: 10.1186/s12967-022-03636-9
pmid: 36138430
|
[17] |
Wicherska-Pawłowska K, Wróbel T, Rybka J. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases[J]. Int J Mol Sci, 2021, 22(24): 13397.
|
[18] |
Deng S, Hu Y, Zhou J, et al. TLR4 mediates alveolar bone resorption in experimental peri-implantitis through regulation of CD45+ cell infiltration, RANKL/OPG ratio, and inflammatory cytokine production[J]. J Periodontol, 2020, 91(5): 671-682.
doi: 10.1002/JPER.18-0748
pmid: 31489644
|
[19] |
McArthur BA, Scully R, Patrick Ross F, et al. Mechanically induced periprosthetic osteolysis: A systematic review[J]. HSS J, 2019, 15(3): 286-296.
|
[20] |
Tsourdi E, Jähn K, Rauner M, et al. Physiological and pathological osteocytic osteolysis[J]. J Musculoskelet Neuronal Interact, 2018, 18(3): 292-303.
pmid: 30179206
|
[21] |
Burra S, Nicolella DP, Francis WL, et al. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels[J]. Proc Natl Acad Sci U S A, 2010, 107(31): 13648-13653.
|
[22] |
Sasaki F, Hayashi M, Ono T, et al. The regulation of RANKL by mechanical force[J]. J Bone Miner Metab, 2021, 39(1): 34-44.
|
[23] |
Bartel L, Mosabbir A. Possible mechanisms for the effects of sound vibration on human health[J]. Healthcare, 2021, 9(5): 597.
|
[24] |
Naveau A, Shinmyouzu K, Moore C, et al. Etiology and measurement of peri-implant crestal bone loss (CBL)[J]. J Clin Med, 2019, 8(2): 166.
|
[25] |
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment[J]. Adv Drug Deliv Rev, 2021, 174: 87-113.
|
[26] |
Lin WM, Li QW, Zhang DT, et al. Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution[J]. Bone Res, 2021, 9(1): 17.
doi: 10.1038/s41413-021-00141-5
pmid: 33723232
|
[27] |
Skripitz R, Aspenberg P. Pressure-induced periprosthetic osteolysis: A rat model[J]. J Orthop Res, 2000, 18(3): 481-484.
pmid: 10937637
|
[28] |
Kapasa ER, Giannoudis PV, Jia XD, et al. The effect of RANKL/OPG balance on reducing implant complications[J]. J Funct Biomater, 2017, 8(4): 42.
|
[29] |
Lee SJ, Alamri O, Cao HL, et al. Occlusion as a predisposing factor for peri-implant disease: A review article[J]. Clin Implant Dent Relat Res, 2023, 25(4): 734-742.
|
[30] |
Heckmann SM, Linke JJ, Graef F, et al. Stress and inflammation as a detrimental combination for peri-implant bone loss[J]. J Dent Res, 2006, 85(8): 711-716.
doi: 10.1177/154405910608500805
pmid: 16861287
|
[31] |
Naert I, Duyck J, Vandamme K. Occlusal overload and bone/implant loss[J]. Clin Oral Implants Res, 2012, 23(Suppl 6): 95-107.
|
[32] |
Abduljabbar T, Al-Sahaly F, Kellesarian SV, et al. Comparison of peri-implant clinical and radiographic inflammatory parameters and whole salivary destructive inflammatory cytokine profile among obese and non-obese men[J]. Cytokine, 2016, 88: 51-56.
doi: S1043-4666(16)30471-9
pmid: 27560655
|
[33] |
Chmielewski M, Pilloni A. Current molecular, cellular and genetic aspects of peri-implantitis disease: A narrative review[J]. Dent J, 2023, 11(5): 134.
|
[34] |
Gao BC, Wu JY, Lv KJ, et al. Visualized analysis of hotspots and frontiers in diabetes-associated periodontal disease research: A bibliometric study[J]. Ann Transl Med, 2022, 10(24): 1305.
doi: 10.21037/atm-22-2443
pmid: 36660670
|
[35] |
de Oliveira PGFP, Bonfante EA, Bergamo ETP, et al. Obesity/metabolic syndrome and diabetes mellitus on peri-implantitis[J]. Trends Endocrinol Metab, 2020, 31(8): 596-610.
|
[36] |
Esimekara JO, Perez A, Courvoisier DS, et al. Dental implants in patients suffering from autoimmune diseases: A systematic critical review[J]. J Stomatol Oral Maxillofac Surg, 2022, 123(5): e464-e473.
|
[37] |
Korfage A, Raghoebar GM, Arends S, et al. Dental implants in patients with sjögren's syndrome[J]. Clin Implant Dent Relat Res, 2016, 18(5): 937-945.
|
[38] |
Hashim D, Cionca N. A comprehensive review of peri-implantitis risk factors[J]. Curr Oral Health Rep, 2020, 7(3): 262-273.
|
[39] |
Aghaloo T, Pi-Anfruns J, Moshaverinia A, et al. The effects of systemic diseases and medications on implant osseointegration: A systematic review[J]. 2019, 34: s35-s49.
|
[40] |
Al-Qahtani F, Alqhtani N, Divakar DD, et al. Levels of whole salivary advanced glycation end products and interleukin-17 and peri-implant clinical and radiographic status in patients with osteoporosis at 6-years' follow-up[J]. BMC Oral Health, 2022, 22(1): 526.
doi: 10.1186/s12903-022-02591-7
pmid: 36424586
|
[41] |
Mumcu E, Dayan SÇ. Effect of smoking and locations of dental implants on peri-implant parameters: 3-year follow-up[J]. Med Sci Monit, 2019, 25: 6104-6109.
|
[42] |
Insua A, Galindo-Moreno P, Miron RJ, et al. Emerging factors affecting peri-implant bone metabolism[J]. Periodontol 2000, 2024, 94(1): 27-78.
|
[43] |
Zhou ZL, Shi Q, Wang J, et al. The unfavorable role of titanium particles released from dental implants[J]. Nanotheranostics, 2021, 5(3): 321-332.
doi: 10.7150/ntno.56401
pmid: 33732603
|
[44] |
Gaur S, Agnihotri R, Albin S. Bio-tribocorrosion of titanium dental implants and its toxicological implications: A scoping review[J]. 2022, 2022: 4498613.
|
[45] |
Olmedo D, Fernández MM, Guglielmotti MB, et al. Macrophages related to dental implant failure[J]. Implant Dent, 2003, 12(1): 75-80.
doi: 10.1097/01.id.0000041425.36813.a9
pmid: 12704960
|
[46] |
Asa'ad F, Thomsen P, Kunrath MF. The role of titanium particles and ions in the pathogenesis of peri-implantitis[J]. J Bone Metab, 2022, 29(3): 145-154.
|
[47] |
Kim KT, Eo MY, Nguyen TTH, et al. General review of titanium toxicity[J]. Int J Implant Dent, 2019, 5(1): 10.
doi: 10.1186/s40729-019-0162-x
pmid: 30854575
|
[48] |
He YD, Gao YX, Ma QL, et al. Nanotopographical cues for regulation of macrophages and osteoclasts: Emerging opportunities for osseointegration[J]. J Nanobiotechnology, 2022, 20(1): 510.
|
[49] |
Liang BL, Wang HC, Wu D, et al. Macrophage M1/M2 polarization dynamically adapts to changes in microenvironment and modulates alveolar bone remodeling after dental implantation[J]. J Leukoc Biol, 2021, 110(3): 433-447.
|
[50] |
Kheder W, Al Kawas S, Khalaf K, et al. Impact of tribocorrosion and titanium particles release on dental implant complications—A narrative review[J]. Jpn Dent Sci Rev, 2021, 57: 182-189.
|
[51] |
Kotsakis GA, Olmedo DG. Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype[J]. Periodontol 2000, 2021, 86(1): 231-240.
doi: 10.1111/prd.12372
pmid: 33690947
|
[52] |
Wang X, Li Y, Feng Y, et al. Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model[J]. J Periodontal Res, 2019, 54(4): 329-338.
doi: 10.1111/jre.12633
pmid: 30635919
|
[53] |
Cadosch D, Sutanto M, Chan E, et al. Titanium uptake, induction of RANK-L expression, and enhanced proliferation of human T-lymphocytes[J]. J Orthop Res, 2010, 28(3): 341-347.
doi: 10.1002/jor.21013
pmid: 19810098
|
[54] |
Kheder W, Bouzid A, Venkatachalam T, et al. Titanium particles modulate lymphocyte and macrophage polarization in peri-implant gingival tissues[J]. Int J Mol Sci, 2023, 24(14): 11644.
|
[55] |
Park JH, Park MS, Kim HJ, et al. Better oral hygiene is associated with a reduced risk of osteoporotic fracture: A nationwide cohort study[J]. Front Endocrinol, 2023, 14: 1253903.
|
[56] |
Yao Y, Cai XY, Ren FJ, et al. The macrophage-osteoclast axis in osteoimmunity and osteo-related diseases[J]. Front Immunol, 2021, 12: 664871.
|
[57] |
Song ZZ, Cheng YX, Chen MM, et al. Macrophage polarization in bone implant repair: A review[J]. Tissue Cell, 2023, 82: 102112.
|
[58] |
Murgia D, Mauceri R, Campisi G, et al. Advance on resveratrol application in bone regeneration: Progress and perspectives for use in oral and maxillofacial surgery[J]. Biomolecules, 2019, 9(3): 94.
|
[59] |
You JQ, Zhang YD, Zhou YM. Strontium functionalized in biomaterials for bone tissue engineering: A prominent role in osteoimmunomodulation[J]. Front Bioeng Biotechnol, 2022, 10: 928799.
|
[60] |
Vig S, Fernandes MH. Bone cell exosomes and emerging strategies in bone engineering[J]. Biomedicines, 2022, 10(4): 767.
|
[61] |
Kamiya Y, Kikuchi T, Goto H, et al. IL-35 and RANKL synergistically induce osteoclastogenesis in RAW264 mouse monocytic cells[J]. Int J Mol Sci, 2020, 21(6): 2069.
|
[62] |
Bi CS, Sun LJ, Qu HL, et al. The relationship between T-helper cell polarization and the RANKL/OPG ratio in gingival tissues from chronic periodontitis patients[J]. Clin Exp Dent Res, 2019, 5(4): 377-388.
|
[63] |
Montaseri A, Giampietri C, Rossi M, et al. The role of autophagy in osteoclast differentiation and bone resorption function[J]. Biomolecules, 2020, 10(10): 1398.
|
[64] |
Lin TH, Tamaki Y, Pajarinen J, et al. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-κB as a therapeutic target[J]. Acta Biomater, 2014, 10(1): 1-10.
|
[65] |
Zhou CH, Shi ZL, Meng JH, et al. Sophocarpine attenuates wear particle-induced implant loosening by inhibiting osteoclastogenesis and bone resorption via suppression of the NF-κB signalling pathway in a rat model[J]. Br J Pharmacol, 2018, 175(6): 859-876.
|
[66] |
Zheng X, Wang D. The adenosine A2A receptor agonist accelerates bone healing and adjusts treg/Th17 cell balance through interleukin 6[J]. Biomed Res Int, 2020, 2020: 2603873.
|
[67] |
Guder C, Gravius S, Burger C, et al. Osteoimmunology: A current update of the interplay between bone and the immune system[J]. Front Immunol, 2020, 11: 58.
doi: 10.3389/fimmu.2020.00058
pmid: 32082321
|
[68] |
Anitua E, Alkhraisat MH, Eguia A. On peri-implant bone loss theories: Trying to piece together the jigsaw[J]. Cureus, 2023, 15(1): e33237.
|