[1] Albrektsson T, Br?覽nemark PI, Hansson HA, et al. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man[J]. Acta Orthop Scand, 1981, 52(2):155-170.
[2] Badylak SF, Gilbert TW. Immune response to biologic scaffold materials[J]. Semin Immunol, 2008, 20(2):109-116.
[3] Han HJ, Kim S, Han DH. Multifactorial evaluation of implant failure: a 19-year retrospective study [J]. Int J Oral Maxillofac Implants, 2014, 29(2):303-310.
[4] Brown BN, Badylak SF. Expanded applications, shifting paradigms, and an improved understanding of host-biomaterial interactions[J]. Acta Biomater, 2013, 9(2):4948-4955.
[5] Janeway CA, Medzhitov R. Innate Immune Recognition [J]. Annu Rev Immunol, 2002, 20(1):197-216.
[6] Mills CD, Lenz LL, Ley K. Macrophages at the fork in the road to health or disease[J]. Front Immunol, 2015, 6:59.
[7] Mantovani A, Biswas SK, Galdiero MR, et al. Macrophage plasticity and polarization in tissue repair and remodeling[J]. J Pathol, 2013, 229(2):176-185.
[8] Underwood RA, Usui ML, Zhao G, et al. Quantifying the effect of pore size and surface treatment on epidermal incorporation into percutaneously implanted sphere-templated porous biomaterials in mice[J]. J Biomed Mater Res A, 2011, 98(4):499-508.
[9] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials[J]. Semin Immunol, 2008, 20(2):86-100.
[10] Omar O, Lenner?覽s M, Svensson S, et al. Integrin and chemokine receptor gene expression in implant-adherent cells during early osseointegration[J]. J Mater Sci Mater Med, 2010, 21(3):969-980.
[11] Rao AJ, Gibon E, Ma T, et al. Revision joint replacement, wear particles, and macrophage polarization[J]. Acta Biomater, 2012, 8(7):2815-2823.
[12] Anderson JM. Inflammatory response to implants [J]. Trans Am Soc Artif Intern Organs, 1988, 34(2):101.
[13] Kajahn J, Franz S, Rueckert E, et al. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation [J]. Biomatter, 2012, 2(4):226-236.
[14] Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation[J]. Immunity, 2014, 40(1):91-104.
[15] Davies LC, Jenkins SJ, Allen JE, et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14(10):986-995.
[16] Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9):6425-6440.
[17] Williams DF. On the mechanisms of biocompatibility [J]. Biomaterials, 2008, 29(20):2941-2953.
[18] Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going [J]. Annu Rev of Biomed Eng, 2004, 6:41-75.
[19] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity[J]. Nat Rev Immunol, 2011, 11(11):750-761.
[20] Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25(12):677-686.
[21] Sridharan R, Cameron AR, Kelly DJ, et al. Biomaterial based modulation of macrophage polarization: a review and suggested design principles[J]. Mater Today, 2015, 18(6):313-325.
[22] Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25(12):677-686.
[23] Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12):958-969.
[24] Saccani A, Schioppa T, Porta C, et al. p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance[J]. Cancer Res, 2006, 66(23):11432-11440.
[25] Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds [J]. Biomaterials, 2015, 37:194-207.
[26] Civantos A, Martínez-Campos E, Ramos V, et al. Titanium coatings and surface modifications: toward clinically useful bioactive implants[J]. Acs Biomater Sci Eng, 2017, 3(7):1245-1267.
[27] Thalji G, Cooper LF. Molecular assessment of osseointegration in vitro: A rof current literature [J]. Int J Oral Maxillofac Implants, 2014, 29(2): e171-199.
[28] Lee RSB, Hamlet SM, Ivanovski S. The influence of titanium surface characteristics on macrophage phenotype polarization during osseous healing in type I diabetic rats: a pilot study[J]. Clin Oral Implants Res, 2017, 28(10): e159-e168.
[29] Refai AK, Textor M, Brunette DM, et al. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines[J]. J Biomed Mater Res A, 2004, 70(2):194-205.
[30] Tan KS, Qian L, Rosado R, et al. The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production [J]. Biomaterials, 2006, 27(30):5170-5177.
[31] Luu TU, Gott SC, Woo BWK, et al. Micro and nano-patterned topographical cues for regulating macrophage cell shape and phenotype[J]. ACS Appl Mater Interfaces, 2015, 7(51):28665-28672.
[32] Ma QL, Zhao LZ, Liu RR, et al. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization [J]. Biomaterials, 2014, 35(37):9853-9867.
[33] Mendon?觭a G, Mendon?觭a DB, Arag?觔o FJ, et al. Advancing dental implant surface technology-From micron- to nanotopography[J]. Biomaterials, 2008, 29(28):3822-3835.
[34] Brodbeck WG, Nakayama Y, Matsuda T, et al. Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro[J]. Cytokine, 2002, 18(6):311-319.
[35] Hotchkiss KM, Reddy GB, Hyzy SL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016, 31:425-434.
[36] Li K, Shen Q, Xie Y, et al. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization[J]. J Biomater Appl, 2017, 31(7):1062-1076.
[37] Singh A, Talekar M, Raikar A, et al. Macrophage-targeted delivery systems for nucleic acid therapy of inflammatory diseases[J]. J Control Release. 2014, 190:515-530.
[38] Carvalho V, Castanheira P, Faria TQ, et al. Biological activity of heterologous murine interleukin-10 and preliminary studies on the use of a dextrin nanogel as a delivery system[J]. Inter J Pharm, 2010, 400(1-2):234-242.
[39] Braat H, Peppelenbosch MP, Hommes DW. Interleukin-10-based therapy for inflammatory bowel disease[J]. Expert Opin Biol Ther, 2003,3(5):725-731.
[40] Hachim D, LoPresti ST, Yates CC, et al. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration[J]. Biomaterials, 2017, 112:95-107.
[41] Kumar M, Gupta P, Bhattacharjee S, et al. Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization[J]. Biomaterials, 2018,187:1-17.
[42] Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds[J]. Biomaterials, 2015, 37:194-207.
[43] Ong SM, Biswas SK, Wong SC. MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration[J]. Adv Drug Deliv Rev, 2015, 88:92-107.
[44] De Miguel MP, Fuentes-Juli?觃n S, Bl?觃zquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications [J]. Curr Mol Med, 2012, 12(5):574-591.
[45] Hoogduijn MJ, Popp F, Verbeek R, et al. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy[J]. Int Immunopharmacol, 2010, 10(12):1496-1500.
[46] Chen L, Tredget EE, Wu Y, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing[J]. PLos One, 2008, 3(4):e1886.
[47] Adutler-Lieber S, Ben-Mordechai T, Naftali-Shani N, et al. Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells[J]. J Cardiovasc Pharmacol Ther, 2013, 18(1):78-86.
[48] Freytes DO, Kang JW, Marcos-Campos I, et al. Macrophages modulate the viability and growth of human mesenchymal stem cells[J]. J Cell Biochem, 2013, 114(1):220-229.
|