[1] Jin SH, Lee JE, Yun JH, et al. Isolation and characterization of human mesenchymal stem cells from gingival connective tissue[J]. J Periodont Res, 2015, 50(4): 461-467.
[2] Bayarsaihan D. Deciphering the epigenetic code in embryonic and dental pulp stem cells[J]. Yale J Biol Med, 2016, 89(4): 539-563.
[3] CHEN Y, HONG T, WANG S, et al. Epigenetic modification of nucleic acids: from basic studies to medical applications [J]. Chem Soc Rev, 2017, 46(10): 2844-2872.
[4] Canovas S, Ross PJ, Kelsey G, et al. DNA methylation in embryo development: epigenetic impact of ART (Assisted reproductive technologies)[J]. BioEssays, 2017, 39(11):DOI: 10.1002/bies.201700106.
[5] Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer [J]. Nat Med, 2019, 25(3): 403-418.
[6] Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications[J]. Nature reviews Genetics, 2016, 17(12): 733-743.
[7] Townsend G, Hughes T, Luciano M, et al. Genetic and environmental influences on human dental variation: a critical evaluation of studies involving twins[J]. Arch Oral Biol, 2009, 54(Suppl 1): S45-S51.
[8] Zhang ZM, Lu R, Wang PC, et al. Structural basis for DNMT3A-mediated de novo DNA methylation[J]. Nature, 2018, 554(7692): 387-391.
[9] Li D, Guo B, Wu H, et al. TET family of dioxygenases: crucial roles and underlying mechanisms[J]. Cytogenet Genome Res, 2015, 146(3): 171-180.
[10] Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16(1): 6-21
[11] Gao XD, Qu JH, Chang XJ, et al. Hypomethylation of long interspersed nuclear element-1 promoter is associated with poor outcomes for curative resected hepatocellular carcinoma[J]. Liver Int, 2014, 34(1): 136-146.
[12] Hlady RA, Tiedemann RL, Puszyk W, et al. Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis[J]. Oncotarget, 2014, 5(19): 9425-9443.
[13] Galvani A, Thiriet C. Nucleosome dancing at the tempo of histone tail acetylation[J]. Genes (Basel), 2015, 6(3): 607-621.
[14] Meier K, Brehm A. Chromatin regulation: How complex does it get [J] ? Epigenetics, 2014, 9(11): 1485-1495.
[15] Laugesen A, Helin K. Chromatin repressive complexes in stem cells, development, and cancer[J]. Cell Stem Cell, 2014, 14(6): 735-751.
[16] Wang Y, Jia S. Degrees make all the difference: the multifunctionality of histone H4 lysine 20 methylation[J]. Epigenetics, 2009, 4(5): 273-276.
[17] Sawan C, Herceg Z. Histone modifications and cancer [J]. Adv Genet, 2010,70: 57-85.
[18] Chen F, Kan H, Castranova V. Handbook of Epigenetics [M]//Methylation of lysine 9 of histone H3: role of heterochromatin modulation and tumorigenesis. Birmingham :Academic Press,2011: 149-157.
[19] Blanc RS, Richard S. Arginine methylation: the coming of age [J]. Mol Cell, 2017, 65(1): 8-24.
[20] Pedersen MT, Helin K. Histone demethylases in development and disease[J]. Trends Cell Biol, 2010, 20(11): 662-671.
[21] Wang J, Scully K, Zhu X, et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes [J]. Nature, 2007, 446(7138): 882.
[22] Lim S, Janzer A, Becker A, et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology [J]. Carcinogenesis, 2009, 31(3): 512-520.
[23] Hu SS, Shan G. LncRNAs in stem cells[J]. Stem Cells Int, 2016, 2016: 1-8.
[24] Lukovic D, Moreno-Manzano V, Klabusay M, et al. Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells[J]. Front Genet, 2014, 5: 132. DIO: 10.3389/fgene.2014.00132.
[25] Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79: 351-379.
[26] Wang H, Feng C, Jin Y, et al. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019, 234(7): 10166-10177.
[27] Zhai QM, Dong ZW, Wang W, et al. Dental stem cell and dental tissue regeneration[J]. Front Med, 2019, 13(2): 152-159.
[28] Wan M, Li H, Zhou Y, et al. DNA methylation: A frontier in tooth organogenesis and developmental dental defects[J]. Curr Stem Cell Res Ther, 2018, 13(2): 151-158.
[29] Zhang D, Li Q, Rao L, et al. Effect of 5-Aza-2'-deoxycytidine on odontogenic differentiation of human dental pulp cells[J]. J Endod, 2015, 41(5): 640-645.
[30] Nakatsuka R, Nozaki T, Uemura Y, et al. 5-Aza-2'-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells[J]. Arch Oral Biol, 2010, 55(5): 350-357.
[31] Rao LJ, Yi BC, Li QM, et al. TET1 knockdown inhibits the odontogenic differentiation potential of human dental pulp cells[J]. Int J Oral Sci, 2016, 8(2): 110-116.
[32] Wang T, Liu H, Ning Y, et al. The histone acetyltransferase p300 regulates the expression of pluripotency factors and odontogenic differentiation of human dental pulp cells[J]. PLoS One, 2014, 9(7): e102117.
[33] Liu HJ, Wang T, Li QM, et al. Knock-down of p300 decreases the proliferation and odontogenic differentiation potentiality of HDPCs[J]. Int Endod J, 2015, 48(10): 976-985.
[34] Gu S, Liang J, Wang J, et al. Histone acetylation regulates osteodifferentiation of human dental pulp stem cells via DSPP[J]. Front Biosci (Landmark Ed), 2013, 18: 1072-1079.
[35] Wang Y, Shi ZY, Feng J, et al. HDAC6 regulates dental mesenchymal stem cells and osteoclast differentiation[J]. BMC Oral Heal, 2018, 18(1): 190.
[36] Luo Z, Wang Z, He X, et al. Effects of histone deacetylase inhibitors on regenerative cell responses in human dental pulp cells [J]. Int Endod J, 2018, 51(7): 767-778.
[37] Liu Z, Chen T, Han Q, et al. HDAC inhibitor LMK?235 promotes the odontoblast differentiation of dental pulp cells [J]. Mol Med Report, 2018, 17(1): 1445-1452.
[38] Li B, Yu F, Wu F, et al. EZH2 impairs human dental pulp cell mineralization via the wnt/β-catenin pathway[J]. J Dent Res, 2018, 97(5): 571-579.
[39] Kamiunten T, Ideno H, Shimada A, et al. Essential roles of G9a in cell proliferation and differentiation during tooth development[J]. Exp Cell Res, 2017, 357(2): 202-210.
[40] Zhou Y, Zheng L, Li F, et al. Bivalent histone codes on WNT5A during odontogenic differentiation[J]. J Dent Res, 2018, 97(1): 99-107.
[41] Hoang M, Kim JJ, Kim Y, et al. Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells[J]. Stem Cell Res, 2016, 17(1): 111-121.
[42] Xu J, Yu B, Hong C, et al. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells[J]. Int J Oral Sci, 2013, 5(4): 200-205.
[43] Liu H, Lin H, Zhang L, et al. MiR-145 and miR-143 regulate odontoblast differentiation through targeting Klf4 and Osx genes in a feedback loop[J]. J Biol Chem, 2013, 288(13): 9261-9271.
[44] Wang BL, Wang Z, Nan X, et al. Downregulation of microRNA‐143‐5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen‐activated protein kinases 14‐dependent p38 mitogen‐activated protein kinases signaling pathway[J]. J Cell Physiol, 2019, 234(4): 4840-4850.
[45] Lu X, Chen X, Xing J, et al. miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/β-catenin signaling pathway[J]. Stem Cell Res Ther, 2019, 10(1): 226. DIO: 10.1186/s13287-019-1344-4.
[46] Qiu Z, Lin S, Hu X, et al. Involvement of miR-146a-5p/neurogenic locus notch homolog protein 1 in the proliferation and differentiation of STRO-1+ human dental pulp stem cells[J]. Eur J Oral Sci, 2019, 127(4): 294-303. [47] Sun Q, Liu H, Lin H, et al. MicroRNA-338-3p promotes differentiation of mDPC6T into odontoblast-like cells by targeting Runx2[J]. Mol Cell Biochem, 2013, 377(1-2): 143-149.
[48] Gu S, Ran S, Liu B, et al. miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression [J]. FEBS Lett, 2016, 590(8): 1123-1131.
[49] Chen L, Song Z, Huang S, et al. lncRNA DANCR suppresses odontoblast-like differentiation of human dental pulp cells by inhibiting wnt/β-catenin pathway [J]. Cell Tissue Res, 2016, 364(2): 309-318.
[50] Zeng L, Sun S, Han D, et al. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells [J]. Cell Signal, 2018, 52:65-73.
[51] Zhong YX, Li WS, Liao LS, et al. LncRNA CCAT1 promotes cell proliferation and differentiation via negative modulation of miRNA-218 in human DPSCs[J]. Eur Rev Med Pharmacol Sci, 2019, 23(9): 3575-3583.
[52] Gopinathan G, Kolokythas A, Luan X, et al. Epigenetic Marks define the lineage and differentiation potential of two distinct neural crest-derived intermediate odontogenic progenitor populations[J]. Stem Cells Dev, 2013, 22(12): 1763-1778.
[53] Deng L, Hong H, Zhang X, et al. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway[J]. Biochem Biophys Res Commun, 2018, 503(3): 2061-2067.
[54] Chen P, Wei D, Xie B, et al. Effect and possible mechanism of network between microRNAs and RUNX2 gene on human dental follicle cells[J]. J Cell Biochem, 2014, 115(2): 340-348.
[55] Klingelhffer C, Codrin C, Ettl T, et al. MiRNA-101 supports the osteogenic differentiation in human dental follicle cells[J]. Arch Oral Biol, 2016, 72: 47-50.
[56] Ai T, Zhang J, Wang X, et al. DNA methylation profile is associated with the osteogenic potential of three distinct human odontogenic stem cells[J]. Signal Transduct Target Ther, 2018, 3: 1. DIO: 10.1038/s41392-017-0001-6.
[57] 刘志. DNA去甲基化增强人牙周膜干细胞成骨能力并逆转其在高糖环境下受损的成骨潜能[D]. 泸州: 西南医科大学, 2016.
[58] Li L, Liu W, Wang H, et al. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions[J]. Cell Death Dis, 2018, 9(5): 480. DIO: 10.1038/s41419-018-048-6.
[59] Xue P, Li B, An Y, et al. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation[J]. Cell Death Differ, 2016, 23(11): 1862-1872.
[60] Sun J, Dong Z, Zhang Y, et al. Osthole improves function of periodontitis periodontal ligament stem cells via epigenetic modification in cell sheets engineering[J]. Sci Rep, 2017, 7(1): 5254. DIO: 10.1038/s41598-017-05762-7.
[61] Um S, Lee H, Zhang QB, et al. Valproic acid modulates the multipotency in periodontal ligament stem cells via p53-mediated cell cycle[J]. Tissue Eng Regen Med, 2017, 14(2): 153-162.
[62] Li B, Sun J, Dong ZW, et al. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment[J]. Sci Rep, 2016, 6: 26542. DIO: 10.1038/srep26542.
[63] Li Q, Ma Y, Zhu Y, et al. Declined expression of histone deacetylase 6 contributes to periodontal ligament stem cell aging [J]. J Periodontol, 2017, 88(1): e12-e23.
[64] Wang P, Li Y, Meng T, et al. KDM6A promotes chondrogenic differentiation of periodontal ligament stem cells by demethylation of SOX9[J]. Cell Prolif, 2018, 51(3): e12413.
[65] Han N, Zhang F, Li G, et al. Local application of IGFBP5 protein enhanced periodontal tissue regeneration via increasing the migration, cell proliferation and osteo/dentinogenic differentiation of mesenchymal stem cells in an inflammatory niche [J]. Stem Cell Res Ther, 2017, 8(1): 210. DIO: 10.1186/s13287-017-0663-6.
[66] Zhang Y, Li S, Yuan S, et al. MicroRNA-23a inhibits osteogenesis of periodontal mesenchymal stem cells by targeting bone morphogenetic protein signaling [J]. Arch Oral Biol, 2019, 102: 93-100.
[67] XU Y, REN C, ZHAO X, et al. MicroRNA-132 inhibits osteogenic differentiation of periodontal ligament stem cells via GDF5 and the NF-κB signaling pathway[J]. Pathol Res Pract, 2019, 215(12): 152722. DIO: 10.1016/j.prp.2019.152722.
[68] Zhao S, Cheng Y, Kim JG. MicroRNA-146a downregulates IL-17 and IL-35 and inhibits proliferation of human periodontal ligament stem cells[J]. J Cell Biochem, 2019, 120(8): 13861-13866.
[69] Yan GQ, Wang X, Yang F, et al. MicroRNA-22 promoted osteogenic differentiation of human periodontal ligament stem cells by targeting HDAC6[J]. J Cell Biochem, 2017, 118(7): 1653-1658. [70] Gu X, Li M, Jin Y, et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017, 18(1): 100. DIO: 10.1186/s12863-017-0569-4.
[71] Li X, Zheng Y, Zheng Y, et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018, 9(1): 232. DIO: 10.1186/s13287-018-0976-0.
[72] Peng W, Deng W, Zhang J, et al. Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758[J]. Biochem Biophys Res Commun, 2018, 503(2): 815-821.
[73] Wang L, Wu F, Song Y, et al. Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients[J]. Cell Death Dis, 2016, 7(8): e2327. DIO: 10.1038/cddis.2016.125. |