[1] Enkling N, Nicolay C, Utz KH, et al. Tactile sensibility of single-tooth implants and natural teeth[J]. Clin Oral Implants Res, 2007, 18(2):231-236.
[2] 朱一博, 林野, 邱立新, 等. 牙种植体骨感知外周神经机制的动物实验[J]. 中华口腔医学杂志, 2009, 44(8):460-463.
[3] Lee C, Wei X, Li Q, et al. Elastic and frictional properties of graphene [J]. Phys. Status Solidi B, 2009, 246:2562-2567.
[4] Singh DP, Herrera CE, Singh B, et al. Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications[J]. Mater Sci Eng C Mater Biol Appl, 2018, 86:173-197.
[5] Zancanela DC, Simão AM, Francisco CG, et al. Graphene oxide and titanium: synergistic effects on the biomineralization ability of osteoblast cultures[J]. J Mater Sci Mater Med, 2016, 27(4):71.
[6] Wang Q, Chen J, Niu Q, et al. The application of graphene oxidized combining with decellularized scaffold to repair of sciatic nerve injury in rats[J]. Saudi Pharm J, 2017, 25(4):469-476.
[7] Bunge MB, Williams AK, Wood PM. Neuron-Schwann cell interaction in basal lamina formation[J]. Dev Biol, 1982, 92(2):449-60.
[8] Jalani G, Jeyachandran D, Bertram Church R, et al. Graphene oxide-stabilized perfluorocarbon emulsions for controlled oxygen delivery[J]. Nanoscale. 2017, 9(29):10161-10166.
[9] Durán N, Martinez DS, Silveira CP, et al. Graphene oxide: a carrier for Pharmaceuticals and a scaffold for cell interactions[J]. Curr Top Med Chem, 2015, 15(4):309-327.
[10] Lee WC, Lim CH, Shi H, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano,2011, 5(9):7334-7341.
[11] Pan CJ, Pang LQ, Gao F, et al. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface[J]. Mater Sci Eng C Mater Biol Appl, 2016, 63:333-340.
[12] Zhao Y, Wang Y, Niu C, et al. Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting schwann cells growth[J]. J Biomed Mater Res A. 2018, 106(7):1951-1964.
[13] Li G, Zhao Y, Zhang L, et al. Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on schwann cells attachment and proliferation[J]. Colloids Surf B Biointerfaces. 2016, 143:547-556.
[14] Mosahebi A, Fuller P, Wiberg M, et al. Effect of allogeneic schwann cell transplantation on peripheral nerve regeneration[J]. Exp Neurol. 2002, 173(2):213-223.
[15] Lee DY, Khatun Z, Lee JH, et al. Blood compatible graphene/heparin conjugate through noncovalent chemistry[J]. Biomacromolecules. 2011, 12(2):336-341.
[16] Fu C, Yang X, Tan S, et al. Enhancing cell proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts by BMP-2 delivery in graphene oxide-incorporated PLGA/HA biodegradable microcarriers[J]. Sci Rep. 2017, 7(1):12549.
[17] Upadhyay R, Naskar S, Bhaskar N, et al. Modulation of protein adsorption and cell proliferation on polyethylene immobilized graphene oxide reinforced HDPE bionanocomposites[J]. ACS Appl Mater Interfaces. 2016, 8(19):11954-11968.
[18] Nishida E, Miyaji H, Kato A, et al. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket[J]. Int J Nanomedicine. 2016, 11:2265-2277.
[19] Luo Y, Shen H, Fang Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly (lactic-co-glycolic acid) nanofibrous mats[J]. ACS Appl Mater Interfaces. 2015, 7(11):6331-6339.
[20] Rajaraman R, Rounds DE, Yen SP, et al. A scanning electron microscope study of cell adhesion and spreading in vitro[J]. Exp Cell Res. 1974, 88(2):327-339.
[21] Guo S, Zhu X, Li M, et al. Parallel control over surface charge and wettability using polyelectrolyte architecture: effect on protein adsorption and cell adhesion.[J]. ACS Appl Mater Interfaces, 2016, 8(44):30552-30563.
[22] Nalluri SM, Krishnan GR, Cheah C, et al. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2015, 54:182-195.
[23] Yang D, Li T, Xu M, et al. Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons[J]. Nanomedicine (Lond). 2014, 9(16):2445-2255.
|