[1] Shin KY, Lee S, Hong S, et al. Graphene size control via a mechanochemical method and electroresponsive properties[J]. Acs Appl Mater Inter, 2014, 6(8):5531-5537.
[2] Zhao NF, Yang M, Zhao Q, et al. Superstretchable Nacre-Mimetic Graphene/Poly (vinyl alcohol) composite film based on interfacial architectural engineering[J]. ACS Nano, 2017: acsnano. 7b01089.
[3] Vacchi I A, Spinato C, Raya J, et al. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR [J]. Nanoscale, 2016, 8(28): 13714-13721.
[4] Sumathra M, Sadasivuni KK, Kumar SS, et al. Cisplatin-Loaded Graphene Oxide/Chitosan/Hydroxyapatite Composite as a Promising Tool for Osteosarcoma-Affected Bone Regeneration[J]. ACS Omega. 2018, 3(11):14620-14633.
[5] Park S, Ruoff RS. Chemical methods for the production of graphenes[J]. Nat. Nanotechnol. 2009, 4(4): 217-224.
[6] Gilje S, Han S, Wang M, et al. A Chemical Route to Graphene for Device Applications[J]. Nano Lett. 2007, 7(11):3394-3398.
[7] Park S, An J, Jung I, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Lett. 2009,9(4):1593-1597.
[8] Kim F, Huang J, Cote LJ. Langmuir? Blodgett assembly of graphite oxide single layers[J].J Am Chem Soc. 2009, 131(3): 1043-1049.
[9] Kim J, Cote LJ, Kim F, et al. Graphene oxide sheets at interfaces[J]. J Am Chem Soc. 2010, 132(23):8180-8186.
[10] Ahmed J, Mulla M, Arfat YA, et al. Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films[J]. Food Hydrocolloids, 2017, 71:141-148.
[11] Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner[J]. Carbon, 2012, 50(5):1853–1860.
[12] Zhang D, Yang S, Chen Y, et al. 60Co γ-ray irradiation crosslinking of chitosan/graphene oxide composite film: swelling, thermal stability, mechanical, and antibacterial properties[J]. Polymers (Basel), 2018, 10(3):294.
[13] Yadav N, Dubey A, Shukla S, et al. Graphene oxide-coated surface: inhibition of bacterial biofilm formation due to specific surface–interface interactions[J]. ACS Omega, 2017, 2(7):3070-3082.
[14] Gurunathan S, Woong HJ, Abdal DA, et al. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa[J]. Int J Nanomed, 2012, 7:5901.
[15] Kaur M, Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin (LtxA; Leukothera) induces cofilin dephosphorylation and actin depolymerization during killing of malignant monocytes[J]. Microbiology, 160(Pt_11):2443-2452.
[16] Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS NANO, 2010, 4(7):4317-4323.
[17] Liu S, Hu M, Zeng TH, et al. Lateral dimension-dependent antibacterial activity of graphene oxide sheets[J]. Langmuir, 2012, 28(33):12364-12372.
[18] Perreault F, De Faria AF, Nejati S, et al. Antimicrobial properties of graphene oxide nanosheets: why size matters[J]. ACS Nano, 2015, 9(7):7226-7236.
[19] Akhavan O, Ghaderi E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria[J]. ACS NANO, 2010, 4(10):5731-5736.
|