[1] |
Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment[J]. Mayo Clin Proc, 2016, 91(3):386-396.
doi: 10.1016/j.mayocp.2015.12.017
pmid: 26944243
|
[2] |
Mermod M, Tolstonog G, Simon C, et al. Extracapsular spread in head and neck squamous cell carcinoma: a systematic review and meta-analysis[J]. Oral Oncol, 2016, 62: 60-71.
doi: S1368-8375(16)30179-8
pmid: 27865373
|
[3] |
Swiecicki PL, Brennan JR, Mierzwa M, et al. Head and neck squamous cell carcinoma detection and surveillance: advances of liquid biomarkers[J]. Laryngoscope, 2019, 129(8):1836-1843.
doi: 10.1002/lary.27725
|
[4] |
Di Meo A, Bartlett J, Cheng Y, et al. Liquid biopsy: a step forward towards precision medicine in urologic malignancies[J]. Mol Cancer, 2017, 16(1):80.
doi: 10.1186/s12943-017-0644-5
pmid: 28410618
|
[5] |
Jia S, Zhang R, Li Z, et al. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer[J]. Oncotarget, 2017, 8(33):55632-55645.
doi: 10.18632/oncotarget.17184
pmid: 28903450
|
[6] |
Sumanasuriya S, Lambros MB, de Bono JS. Application of liquid biopsies in cancer targeted therapy[J]. Clin Pharmacol Ther, 2017, 102(5):745-747.
doi: 10.1002/cpt.764
pmid: 28755443
|
[7] |
Murtaza M, Dawson SJ, Tsui DW, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA[J]. Nature, 2013, 497(7447):108-112.
doi: 10.1038/nature12065
|
[8] |
Alix-Panabières C, Pantel K. Real-time liquid biopsy: circulating tumor cells versus circulating tumor DNA[J]. Ann Transl Med, 2013, 1(2):18.
doi: 10.3978/j.issn.2305-5839.2013.06.02
pmid: 25332962
|
[9] |
Thierry AR, El Messaoudi S, Gahan PB, et al. Origins, structures, and functions of circulating DNA in oncology[J]. Cancer Metastasis Rev, 2016, 35(3):347-376.
doi: 10.1007/s10555-016-9629-x
URL
|
[10] |
Viorritto IC, Nikolov NP, Siegel RM. Autoimmunity versus tolerance: can dying cells tip the balance[J]. Clin Immunol, 2007, 122(2):125-134.
pmid: 17029966
|
[11] |
Holdenrieder S, Stieber P. Clinical use of circulating nucleosomes[J]. Crit Rev Clin Lab Sci, 2009, 46(1):1-24.
doi: 10.1080/10408360802485875
URL
|
[12] |
Delgado PO, Alves BC, Gehrke Fde S, et al. Characterization of cell-free circulating DNA in plasma in patients with prostate cancer[J]. Tumour Biol, 2013, 34(2):983-986.
doi: 10.1007/s13277-012-0634-6
URL
|
[13] |
Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells[J]. Cancer Res, 2001, 61(4):1659-1665.
pmid: 11245480
|
[14] |
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation[J]. Nat Rev Microbiol, 2009, 7(2):99-109.
doi: 10.1038/nrmicro2070
pmid: 19148178
|
[15] |
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells[J]. Infect Immun, 2005, 73(4):1907-1916.
doi: 10.1128/IAI.73.4.1907-1916.2005
pmid: 15784530
|
[16] |
Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology[J]. Sports Med, 2012, 42(7):565-586.
doi: 10.2165/11631380-000000000-00000
pmid: 22694348
|
[17] |
Mouliere F, Thierry AR. The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients[J]. Expert Opin Biol Ther, 2012, 12(Suppl 1):S209-S215.
doi: 10.1517/14712598.2012.688023
URL
|
[18] |
D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers[J]. Genes Dev, 2012, 26(12):1287-1299.
doi: 10.1101/gad.192351.112
URL
|
[19] |
Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy[J]. Hum Mol Genet, 2012, 21(R1):R125-R134.
doi: 10.1093/hmg/dds317
URL
|
[20] |
Turturici G, Tinnirello R, Sconzo G, et al. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages[J]. Am J Physiol, Cell Physiol, 2014, 306(7):C621-C633.
doi: 10.1152/ajpcell.00228.2013
URL
|
[21] |
Thierry AR, Mouliere F, Gongora C, et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts[J]. Nucleic Acids Res, 2010, 38(18):6159-6175.
doi: 10.1093/nar/gkq421
pmid: 20494973
|
[22] |
Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas[J]. Sci Transl Med, 2015, 7(293):293ra104.
|
[23] |
Lin LH, Chang KW, Kao SY, et al. Increased plasma circulating cell-free DNA could be a potential marker for oral cancer[J]. Int J Mol Sci, 2018, 19(11):E3303.
|
[24] |
Mazurek AM, Rutkowski T, Fiszer-Kierzkowska A, et al. Assessment of the total cfDNA and HPV16/18 detection in plasma samples of head and neck squamous cell carcinoma patients[J]. Oral Oncol, 2016, 54: 36-41.
doi: 10.1016/j.oraloncology.2015.12.002
pmid: 26786940
|
[25] |
Tissot C, Toffart AC, Villar S, et al. Circulating free DNA concentration is an independent prognostic biomarker in lung cancer[J]. Eur Respir J, 2015, 46(6):1773-1780.
doi: 10.1183/13993003.00676-2015
pmid: 26493785
|
[26] |
Leon SA, Shapiro B, Sklaroff DM, et al. Free DNA in the serum of cancer patients and the effect of therapy[J]. Cancer Res, 1977, 37(3):646-650.
pmid: 837366
|
[27] |
Thornton B, Basu C. Real-time PCR (qPCR) primer design using free online software[J]. Biochem Mol Biol Educ, 2011, 39(2):145-154.
doi: 10.1002/bmb.v39.2
URL
|
[28] |
Endris V, Penzel R, Warth A, et al. Molecular diagnostic profiling of lung cancer specimens with a semiconductor-based massive parallel sequencing approach: feasibility, costs, and performance compared with conventional sequencing[J]. J Mol Diagn, 2013, 15(6):765-775.
doi: 10.1016/j.jmoldx.2013.06.002
pmid: 23973117
|
[29] |
Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA[J]. J Clin Oncol, 2014, 32(6):579-586.
doi: 10.1200/JCO.2012.45.2011
pmid: 24449238
|
[30] |
Fassunke J, Ihle MA, Lenze D, et al. EGFR T790M mutation testing of non-small cell lung cancer tissue and blood samples artificially spiked with circulating cell-free tumor DNA: results of a round robin trial[J]. Virchows Arch, 2017, 471(4):509-520.
doi: 10.1007/s00428-017-2226-8
URL
|
[31] |
Volckmar AL, Sültmann H, Riediger A, et al. A field guide for cancer diagnostics using cell-free DNA: from principles to practice and clinical applications[J]. Genes Chromosomes Cancer, 2018, 57(3):123-139.
doi: 10.1002/gcc.v57.3
URL
|
[32] |
Bartels S, Persing S, Hasemeier B, et al. Molecular analysis of circulating cell-free DNA from lung cancer patients in routine laboratory practice: a cross-platform comparison of three different molecular methods for mutation detection[J]. J Mol Diagn, 2017, 19(5):722-732.
doi: S1525-1578(17)30213-1
pmid: 28723342
|
[33] |
Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution[J]. Nature, 2017, 545(7655):446-451.
doi: 10.1038/nature22364
URL
|
[34] |
Xu T, Kang X, You X, et al. Cross-platform comparison of four leading technologies for detecting EGFR mutations in circulating tumor DNA from non-small cell lung carcinoma patient plasma[J]. Theranostics, 2017, 7(6):1437-1446.
doi: 10.7150/thno.16558
URL
|
[35] |
Vogelstein B, Kinzler KW. Digital PCR[J]. Proc Natl Acad Sci USA, 1999, 96(16):9236-9241.
doi: 10.1073/pnas.96.16.9236
pmid: 10430926
|
[36] |
Oshiro C, Kagara N, Naoi Y, et al. PIK3CA mutations in serum DNA are predictive of recurrence in primary breast cancer patients[J]. Breast Cancer Res Treat, 2015, 150(2):299-307.
doi: 10.1007/s10549-015-3322-6
URL
|
[37] |
Busser B, Lupo J, Sancey L, et al. Plasma circulating tumor DNA levels for the monitoring of melanoma patients: landscape of available technologies and clinical applications[J]. Biomed Res Int, 2017, 2017: 5986129.
|
[38] |
Christensen E, Birkenkamp-Demtröder K, Nordentoft I, et al. Liquid biopsy analysis of FGFR3 and PIK3CA hotspot mutations for disease surveillance in bladder cancer[J]. Eur Urol, 2017, 71(6):961-969.
doi: S0302-2838(16)30920-4
pmid: 28069289
|
[39] |
Day E, Dear PH, McCaughan F. Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine[J]. Methods, 2013, 59(1):101-107.
doi: 10.1016/j.ymeth.2012.08.001
pmid: 22926236
|
[40] |
Rachiglio AM, Esposito Abate R, Sacco A, et al. Limits and potential of targeted sequencing analysis of liquid biopsy in patients with lung and colon carcinoma[J]. Oncotarget, 2016, 7(41):66595-66605.
doi: 10.18632/oncotarget.10704
pmid: 27448974
|
[41] |
Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA[J]. Nat Biotechnol, 2016, 34(5):547-555.
doi: 10.1038/nbt.3520
pmid: 27018799
|
[42] |
Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers using circulating tumor DNA[J]. Sci Transl Med, 2017, 9(403):eaan2415.
|
[43] |
Dietz S, Schirmer U, Mercé C, et al. Low input whole-exome sequencing to determine the representation of the tumor exome in circulating DNA of non-small cell lung cancer patients[J]. PLoS One, 2016, 11(8):e0161012. DOI: 10.1371/journal.pone.0161012.
URL
|
[44] |
Leary RJ, Kinde I, Diehl F, et al. Development of personalized tumor biomarkers using massively parallel sequencing[J]. Sci Transl Med, 2010, 2(20):20ra14.
|
[45] |
徐婧, 周有连, 徐豪明, 等. 循环游离DNA在结直肠癌诊疗中的应用进展[J]. 广东医学, 2019, 40(19):2701-2704.
|
[46] |
Chuang AY, Chuang TC, Chang S, et al. Presence of HPV DNA in convalescent salivary rinses is an adverse prognostic marker in head and neck squamous cell carcinoma[J]. Oral Oncol, 2008, 44(10):915-919.
doi: 10.1016/j.oraloncology.2008.01.001
pmid: 18329326
|
[47] |
Rave-Fränk M. Tumour-derived plasma cell-free DNA in patients with head and neck cancer: a short review[J]. Cancer Radiother, 2017, 21(6-7):554-556.
doi: S1278-3218(17)30332-3
pmid: 28847459
|
[48] |
Sun W, Zaboli D, Wang H, et al. Detection of TIMP3 promoter hypermethylation in salivary rinse as an independent predictor of local recurrence-free survival in head and neck cancer[J]. Clin Cancer Res, 2012, 18(4):1082-1091.
doi: 10.1158/1078-0432.CCR-11-2392
pmid: 22228635
|
[49] |
Rettori MM, de Carvalho AC, Bomfim Longo AL, et al. Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients[J]. Carcinogenesis, 2013, 34(1):20-27.
doi: 10.1093/carcin/bgs311
pmid: 23042095
|
[50] |
Schröck A, Leisse A, de Vos L, et al. Free-circulating methylated DNA in blood for diagnosis, staging, prognosis, and monitoring of head and neck squamous cell carcinoma patients: an observational prospective cohort study[J]. Clin Chem, 2017, 63(7):1288-1296.
doi: 10.1373/clinchem.2016.270207
pmid: 28515105
|
[51] |
Hamana K, Uzawa K, Ogawara K, et al. Monitoring of circulating tumour-associated DNA as a prognostic tool for oral squamous cell carcinoma[J]. Br J Cancer, 2005, 92(12):2181-2184.
doi: 10.1038/sj.bjc.6602635
|
[52] |
Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536):576-582.
doi: 10.1038/nature14129
|
[53] |
Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 Fusi on- positive cholangiocarcinoma[J]. Cancer Discov, 2017, 7(3):252-263.
doi: 10.1158/2159-8290.CD-16-1000
URL
|
[54] |
Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment[J]. N Engl J Med, 2018, 379(18):1754-1765.
doi: 10.1056/NEJMra1706174
URL
|
[55] |
Bendich A, Wilczok T, Borenfreund E. Circulating DNA as a possible factor in oncogenesis[J]. Science, 1965, 148(3668):374-376.
pmid: 14261529
|
[56] |
García-Olmo DC, Picazo MG, García-Olmo D. Transformation of non-tumor host cells during tumor progression: theories and evidence[J]. Expert Opin Biol Ther, 2012, 12(Suppl 1):S199-S207.
doi: 10.1517/14712598.2012.681370
URL
|
[57] |
Anker P, Lyautey J, Lefort F, et al. Transformation of NIH/3T3 cells and SW 480 cells displaying K-ras mutation[J]. C R Acad Sci Ⅲ, 1994, 317(10):869-874.
|
[58] |
García-Olmo DC, Domínguez C, García-Arranz M, et al. Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells[J]. Cancer Res, 2010, 70(2):560-567.
doi: 10.1158/0008-5472.CAN-09-3513
pmid: 20068178
|
[59] |
Napirei M, Karsunky H, Zevnik B, et al. Features of systemic lupus erythematosus in Dnase1-deficient mice[J]. Nat Genet, 2000, 25(2):177-181.
doi: 10.1038/76032
pmid: 10835632
|
[60] |
贺智凤. TLR3、TLR7、TLR9信号通路对口腔鳞癌发展过程的影响[D]. 南京: 南京大学, 2013.
|
[61] |
Marsman G, Zeerleder S, Luken BM. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation[J]. Cell Death Dis, 2016, 7(12):e2518. DOI: 10.1038/cddis.2016.410.
|
[62] |
Wei H, Hongya P, Linlin J, et al. IFN-γ enhances the anti-tumour immune response of dendritic cells against oral squamous cell carcinoma[J]. Arch Oral Biol, 2011, 56(9):891-898.
doi: 10.1016/j.archoralbio.2011.02.008
pmid: 21474117
|
[63] |
Waldvogel Abramowski S, Tirefort D, Lau P, et al. Cell-free nucleic acids are present in blood products and regulate genes of innate immune response[J]. Transfusion, 2018, 58(7):1671-1681.
doi: 10.1111/trf.14613
pmid: 29664127
|
[64] |
Marcuzzi E, Angioni R, Molon B, et al. Chemokines and chemokine receptors: orchestrating tumor metastasization[J]. Int J Mol Sci, 2018, 20(1):E96.
|