[1] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676.
doi: 10.1016/j.cell.2006.07.024
pmid: 16904174
|
[2] |
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: Immune evasive, not immune privileged[J]. Nat Biotechnol, 2014, 32(3): 252-260.
doi: 10.1038/nbt.2816
pmid: 24561556
|
[3] |
Kristiansen CK, Chen AB, Høyland LE, et al. Comparing the mitochondrial signatures in ESCs and iPSCs and their neural derivations[J]. Cell Cycle, 2022, 21(20): 2206-2221.
doi: 10.1080/15384101.2022.2092185
URL
|
[4] |
Mungenast AE, Siegert S, Tsai LH. Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells[J]. Mol Cell Neurosci, 2016, 73: 13-31.
doi: 10.1016/j.mcn.2015.11.010
pmid: 26657644
|
[5] |
Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced pluripotent stem cells (iPSCs)-roles in regenerative therapies, disease modelling and drug screening[J]. Cells, 2021, 10(9): 2319.
doi: 10.3390/cells10092319
URL
|
[6] |
Mulfaul K, Giacalone JC, Voigt AP, et al. Stepwise differentiation and functional characterization of human induced pluripotent stem cell-derived choroidal endothelial cells[J]. Stem Cell Res Ther, 2020, 11(1): 409.
doi: 10.1186/s13287-020-01903-4
pmid: 32967716
|
[7] |
Dewell TE, Gjoni K, Liu AZ, et al. Transcription factor overexpression drives reliable differentiation of retinal pigment epithelium from human induced pluripotent stem cells[J]. Stem Cell Res, 2021, 53: 102368.
doi: 10.1016/j.scr.2021.102368
URL
|
[8] |
Cao H, Zhou Q, Liu CG, et al. Substrate stiffness regulates differentiation of induced pluripotent stem cells into heart valve endothelial cells[J]. Acta Biomater, 2022, 143: 115-126.
doi: 10.1016/j.actbio.2022.02.032
pmid: 35235867
|
[9] |
Netsrithong R, Suwanpitak S, Boonkaew B, et al. Multilineage differentiation potential of hematoendothelial progenitors derived from human induced pluripotent stem cells[J]. Stem Cell Res Ther, 2020, 11(1): 481.
doi: 10.1186/s13287-020-01997-w
pmid: 33176890
|
[10] |
Liu LP, Li YM, Guo NN, et al. Therapeutic potential of patient iPSC-derived iMelanocytes in autologous transplantation[J]. Cell Rep, 2019, 27(2): 455-466.e5.
doi: S2211-1247(19)30362-6
pmid: 30970249
|
[11] |
Ramzy A, Thompson DM, Ward-Hartstonge KA, et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes[J]. Cell Stem Cell, 2021, 28(12): 2047-2061.e5.
doi: 10.1016/j.stem.2021.10.003
pmid: 34861146
|
[12] |
Dicks AR, Steward N, Guilak F, et al. Chondrogenic differentiation of human-induced pluripotent stem cells[J]. Methods Mol Biol, 2023, 2598: 87-114.
doi: 10.1007/978-1-0716-2839-3_8
pmid: 36355287
|
[13] |
Wei Y, Zeng W, Wan R, et al. Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix[J]. Eur Cell Mater, 2012, 23: 1-12.
pmid: 22241609
|
[14] |
Hu YQ, Chen L, Gao Y, et al. A lithium-containing biomaterial promotes chondrogenic differentiation of induced pluripotent stem cells with reducing hypertrophy[J]. Stem Cell Res Ther, 2020, 11(1): 77.
doi: 10.1186/s13287-020-01606-w
pmid: 32085810
|
[15] |
Zhang ML, Shi JF, Xie M, et al. Recapitulation of cartilage/bone formation using iPSCs via biomimetic 3D rotary culture approach for developmental engineering[J]. Biomaterials, 2020, 260: 120334.
doi: 10.1016/j.biomaterials.2020.120334
URL
|
[16] |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872.
doi: 10.1016/j.cell.2007.11.019
pmid: 18035408
|
[17] |
Orozco-Fuentes S, Neganova I, Wadkin LE, et al. Quantification of the morphological characteristics of hESC colonies[J]. Sci Rep, 2019, 9(1): 17569.
doi: 10.1038/s41598-019-53719-9
pmid: 31772193
|
[18] |
Kobayashi T, Surani MA. On the origin of the human germline[J]. Development, 2018, 145(16): dev150433.
doi: 10.1242/dev.150433
URL
|
[19] |
Abramoff B, Caldera FE. Osteoarthritis: Pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.
doi: 10.1016/j.mcna.2019.10.007
URL
|
[20] |
Edmondson R, Broglie JJ, Adcock AF, et al. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors[J]. ASSAY Drug Dev Technol, 2014, 12(4): 207-218.
doi: 10.1089/adt.2014.573
pmid: 24831787
|
[21] |
Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art[J]. Tissue Eng Part B Rev, 2008, 14(1): 61-86.
doi: 10.1089/teb.2007.0150
URL
|
[22] |
Abousleiman RI, Reyes Y, McFetridge P, et al. Tendon tissue engineering using cell-seeded umbilical veins cultured in a mechanical Stimulator[J]. Tissue Eng Part A, 2009, 15(4): 787-795.
doi: 10.1089/ten.tea.2008.0102
URL
|
[23] |
Yamashita A, Morioka M, Yahara Y, et al. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs[J]. Stem Cell Reports, 2015, 4(3): 404-418.
doi: 10.1016/j.stemcr.2015.01.016
pmid: 25733017
|