[1] Hatano N, Shimizu Y, Ooya K. A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2∶1 autogenous bone/xenograft mixture and simultaneous placement of dental implants[J]. Clin Oral Implants Res, 2004, 15(3):339-345.
[2] Klijn RJ, Meijer GJ, Bronkhorst EM, et al. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans[J]. Tissue Eng Part B Rev, 2010, 16(5):493-507.
[3] Schlegel KA, Fichtner G, Schultze-Mosgau S, et al. Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute[J]. Int J Oral Maxillofac Implants, 2003, 18(1):53-58.
[4] Moon JW, Sohn DS, Heo JU, et al. New bone formation in the maxillary sinus using peripheral venous blood alone[J]. J Oral Maxillofac Surg, 2011, 69(9):2357-2367.
[5] Kim YK, Lee J, Yun JY, et al. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study[J]. J Periodontal Implant Sci, 2014, 44(5):216-221.
[6] Kim ES, Kang JY, Kim JJ, et al. Space maintenance in autogenous fresh demineralized tooth blocks with platelet-rich plasma for maxillary sinus bone formation: a prospective study[J]. Springerplus, 2016, 5:274.
[7] Honda H, Tamai N, Naka N, et al. Bone tissue engineering bone marrow-derived stromal cells integrated with concentrated growth factor in Rattus norvegicus calvaris defect model[J]. J Artif Organs, 2013, 16(3):305-315.
[8] Kim TH, Kim SH, Sándor GK, et al. Comparison of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factor(CGF) in rabbit-skull defect healing[J]. Arch Oral Biol, 2014, 59(5):550-558.
[9] Sohn DS, Heo JU, Kwak DH, et al. Bone regeneration in the maxillary sinus using an autologous fibrin-rich block with concentrated growth factors alone[J]. Implant Dentistry, 2011, 20(5):389-395.
[10] Baslé MF, Grizon F, Pascaretti C, et al. Shape and orientation of osteoblast-like cells (Saos-2) are influenced by collagen fibers in xenogenic bone biomaterial[J]. J Biomed Mater Res, 1998, 40(3):350-357.
[11] Baslé MF, Lesourd M, Grizon F, et al. Type I collagen in xenogenic bone material regulates attachment and spreading of osteoblasts over the beta1 integrin subunit[J]. Orthopade, 1998, 27(2):136-142.
[12] Poumarat G, Squire P. Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft[J]. Biomaterials, 1993, 14(5):337-340.
[13] Bieback K, Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy[J]. World J Stem Cells, 2010, 2(4):81-92.
[14] Ripamonti U. Soluble and insoluble signals sculpt osteogenesis in angiogenesis[J]. World Journal of Biological Chemistry, 2010, 1(5):109.
[15] Rosso F, Marino G, Giordano A, et al. Smart materials as scaffolds for tissue engineering[J]. J Cell Physiol, 2005, 203(3):465-470.
[16] Marolt D, Knezevic M, Novakovic GV. Bone tissue engineering with human stem cells[J]. Stem Cell Res Ther, 2010, 1(2):10.
[17] Kuboki Y, Jin Q, Kikuchi M, et al. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis[J]. Connect Tissue Res, 2002, 43(2-3):529-534.
[18] Kuboki Y, Takita H, Kobayashi D, et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis[J]. J Biomed Mater Res, 1998, 39(2):190-199.
[19] Kang EJ, Byun JH, Choi YJ, et al. In vitro and in vivo osteogenesis of porcine skin-derived mesenchymal stem cell-like cells with a demineralized bone and fibrin glue scaffold[J]. Tissue Eng Part A, 2010, 16(3):815-827.
[20] Lundgren S, Andersson S, Gualini F, et al. Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation[J]. Clin Implant Dent Relat Res, 2004, 6(3):165-173.
[21] Chanavaz M. Maxillary sinus: anatomy, physiology, surgery, and bone grafting related to implantology--eleven years of surgical experience(1979-1990)[J]. J Oral Implantol, 1990, 16(3):199-209.
[22] Hürzeler MB, Kirsch A, Ackermann KL, et al. Reconstruction of the severely resorbed maxilla with dental implants in the augmented maxillary sinus: a 5-year clinical investigation[J]. Int J Oral Maxillofac Implants, 1996, 11(4):466-475.
[23] Hatano N, Shimizu Y, Ooya K. A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2∶1 autogenous bone/xenograft mixture and simultaneous placement of dental implants[J]. Clin Oral Implants Res, 2004, 15(3):339-345.
[24] Kaneko T, Nakamura S, Hino S, et al. Continuous intra-sinus bone regeneration after nongrafted sinus lift with a PLLA mesh plate device and dental implant placement in an atrophic posterior maxilla: a case report[J]. International Journal of Implant Dentistry, 2016, 2(1).
[25] Kutkut A, Andreana S. Medical-grade calcium sulfate hemihydrate in clinical implant dentistry: a review[J]. J Long Term Eff Med Implants, 2010, 20(4):295-301.
[26] Guarnieri R, Grassi R, Ripari M, et al. Maxillary sinus augmentation using granular calcium sulfate (surgiplaster sinus): radiographic and histologic study at 2 years[J]. Int J Periodontics Restorative Dent, 2006, 26(1):79-85.
[27] Schmidlin PR, Nicholls F, Kruse A, et al. Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes[J]. Clin Oral Implants Res, 2013, 24(2):149-157.
[28] Jurisic M, Manojlovic-Stojanoski M, Andric M, et al. Histological and morphometric aspects of ridge preservation with a moldable, in situ hardening bone graft substitute[J]. Archives of Biological Sciences, 2013, 65(2):429-437.
[29] El-Fiqi A, Kim J H, Perez RA, et al. Novel bioactive nanocomposite cement formulations with potential properties: incorporation of the nanoparticle form of mesoporous bioactive glass into calcium phosphate cements[J]. J Mater Chem B, 2015, 3(7):1321-1334.
[30] Ohe JY, Kim GT, Lee JW, et al. Volume stability of hydroxyapatite and β-tricalcium phosphate biphasic bone graft material in maxillary sinus floor elevation: a radiographic study using 3D cone beam computed tomography[J]. Clin Oral Implants Res, 2016, 27(3):348-353.
[31] Esposito M, Felice P, Worthington HV. Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus[J]. Cochrane Database Syst Rev, 2014(5): CD008397.
[32] Shanbhag S, Shanbhag V, Stavropoulos A. Volume changes of maxillary sinus augmentations over time: a systematic review[J]. Int J Oral Maxillofac Implants, 2014, 29(4):881-892. |