| [1] |
Tonetti MS, Jepsen S, Jin LJ, et al. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action[J]. J Clin Periodontol, 2017, 44(5): 456-462.
doi: 10.1111/jcpe.12732
pmid: 28419559
|
| [2] |
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222.
doi: 10.1016/S0140-6736(20)30925-9
URL
|
| [3] |
Luo LS, Luan HH, Jiang JF, et al. The spatial and temporal trends of severe periodontitis burden in Asia, 1990—2019: A population-based epidemiological study[J]. J Periodontol, 2022, 93(11): 1615-1625.
doi: 10.1002/jper.v93.11
URL
|
| [4] |
Akesson L, Håkkansson J, Rohlin M. Comparison of panoramic and intraoral radiography and pocket probing for the measurement of the marginal bone level[J]. J Clin Periodontol, 1992, 19(5): 326-332.
doi: 10.1111/j.1600-051x.1992.tb00654.x
pmid: 1517478
|
| [5] |
Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition[J]. J Periodontol, 2018, 89(Suppl 1): S149-s161.
|
| [6] |
Brady AP. Error and discrepancy in radiology: Inevitable or avoidable[J]. Insights Imaging, 2017, 8(1): 171-182.
doi: 10.1007/s13244-016-0534-1
URL
|
| [7] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539
|
| [8] |
Anthony Lockett. Systematic review and meta-analysis in clinical trials[J]. Medicine, 2025, Vol. 53(6): 364-367.
doi: 10.1016/j.mpmed.2025.04.004
URL
|
| [9] |
Whiting PF, Rutjes AWS, Westwood ME, et al. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intern Med, 2011, 155(8): 529-536.
doi: 10.7326/0003-4819-155-8-201110180-00009
pmid: 22007046
|
| [10] |
Alotaibi G, Awawdeh M, Farook FF, et al. Artificial intelligence (AI) diagnostic tools: Utilizing a convolutional neural network (CNN) to assess periodontal bone level radiographically-a retrospective study[J]. BMC Oral Health, 2022, 22(1): 399.
doi: 10.1186/s12903-022-02436-3
pmid: 36100856
|
| [11] |
Kurt S, Çelİk Ö, Bayrakdar İŞ, et al. Success of artificial intelligence system in determining alveolar bone loss from dental panoramic radiography images[J]. Cumhuriyet Dent J, 2020, 23(4): 318-324.
doi: 10.7126/cumudj.777057
URL
|
| [12] |
Chang HJ, Lee SJ, Yong TH, et al. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis[J]. Sci Rep, 2020, 10(1): 7531.
doi: 10.1038/s41598-020-64509-z
|
| [13] |
Chang J, Chang MF, Angelov N, et al. Application of deep machine learning for the radiographic diagnosis of periodontitis[J]. Clin Oral Investig, 2022, 26(11): 6629-6637.
doi: 10.1007/s00784-022-04617-4
|
| [14] |
Chen IH, Lin CH, Lee MK, et al. Convolutional-neural-network-based radiographs evaluation assisting in early diagnosis of the periodontal bone loss via periapical radiograph[J]. J Dent Sci, 2024, 19(1): 550-559.
doi: 10.1016/j.jds.2023.09.032
pmid: 38303886
|
| [15] |
Danks RP, Bano S, Orishko A, et al. Automating Periodontal bone loss measurement via dental landmark localisation[J]. Int J Comput Assist Radiol Surg, 2021, 16(7): 1189-1199.
doi: 10.1007/s11548-021-02431-z
pmid: 34152567
|
| [16] |
Dujic H, Meyer O, Hoss P, et al. Automatized detection of periodontal bone loss on periapical radiographs by vision transformer networks[J]. Diagnostics, 2023, 13(23): 3562.
doi: 10.3390/diagnostics13233562
URL
|
| [17] |
Hoss P, Meyer O, Wölfle UC, et al. Detection of periodontal bone loss on periapical radiographs-a diagnostic study using different convolutional neural networks[J]. J Clin Med, 2023, 12(22): 7189.
doi: 10.3390/jcm12227189
URL
|
| [18] |
Jiang LH, Chen DQ, Cao Z, et al. A two-stage deep learning architecture for radiographic staging of periodontal bone loss[J]. BMC Oral Health, 2022, 22(1): 106.
doi: 10.1186/s12903-022-02119-z
pmid: 35365122
|
| [19] |
Kim J, Lee HS, Song IS, et al. DeNTNet: Deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs[J]. Sci Rep, 2019, 9(1): 17615.
|
| [20] |
Kim SH, Kim J, Yang S, et al. Automatic and quantitative measurement of alveolar bone level in OCT images using deep learning[J]. Biomed Opt Express, 2022, 13(10): 5468-5482.
doi: 10.1364/BOE.468212
URL
|
| [21] |
Kong ZM, Ouyang H, Cao YY, et al. Automated periodontitis bone loss diagnosis in panoramic radiographs using a bespoke two-stage detector[J]. Comput Biol Med, 2023, 152: 106374.
|
| [22] |
Kurt-Bayrakdar S, Bayrakdar İŞ, Yavuz MB, et al. Detection of periodontal bone loss patterns and furcation defects from panoramic radiographs using deep learning algorithm: A retrospective study[J]. BMC Oral Health, 2024, 24(1): 155.
doi: 10.1186/s12903-024-03896-5
pmid: 38297288
|
| [23] |
Lee CT, Kabir T, Nelson J, et al. Use of the deep learning approach to measure alveolar bone level[J]. J Clin Periodontol, 2022, 49(3): 260-269.
doi: 10.1111/jcpe.v49.3
URL
|
| [24] |
Li HY, Zhou JX, Zhou Y, et al. An interpretable computer-aided diagnosis method for periodontitis from panoramic radiographs[J]. Front Physiol, 2021, 12: 655556.
|
| [25] |
Liu Q, Dai F, Zhu H, et al. Deep learning for the early identification of periodontitis: A retrospective, multicentre study[J]. Clin Radiol, 2023, 78(12): e985-e992.
doi: 10.1016/j.crad.2023.08.017
pmid: 37734974
|
| [26] |
Uzun Saylan BC, Baydar O, Yeşilova E, et al. Assessing the effectiveness of artificial intelligence models for detecting alveolar bone loss in periodontal disease: A panoramic radiograph study[J]. Diagnostics, 2023, 13(10): 1800.
doi: 10.3390/diagnostics13101800
URL
|
| [27] |
Shon HS, Kong V, Park JS, et al. Deep learning model for classifying periodontitis stages on dental panoramic radiography[J]. Appl Sci, 2022, 12(17): 8500.
doi: 10.3390/app12178500
URL
|
| [28] |
Tsoromokos N, Parinussa S, Claessen F, et al. Estimation of alveolar bone loss in periodontitis using machine learning[J]. Int Dent J, 2022, 72(5): 621-627.
doi: 10.1016/j.identj.2022.02.009
pmid: 35570013
|
| [29] |
曲艳吉, 杨智荣, 孙凤, 等. 偏倚风险评估系列:(六)诊断试验[J]. 中华流行病学杂志, 2018, 39(4): 524-531.
|
| [30] |
Khanagar SB, Al-Ehaideb A, Maganur PC, et al. Developments, application, and performance of artificial intelligence in dentistry—A systematic review[J]. J Dent Sci, 2021, 16(1): 508-522.
doi: 10.1016/j.jds.2020.06.019
pmid: 33384840
|
| [31] |
Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions-introduction and key changes from the 1999 classification[J]. J Periodontol, 2018, 45(Suppl 1): S1-S8.
|
| [32] |
Casalegno F, Newton T, Daher R, et al. Caries detection with near-infrared transillumination using deep learning[J]. J Dent Res, 2019, 98(11): 1227-1233.
doi: 10.1177/0022034519871884
pmid: 31449759
|
| [33] |
Koitka S, Kroll L, Malamutmann E, et al. Correction to: Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks[J]. Eur Radiol, 2021, 31(6): 4402-4403.
doi: 10.1007/s00330-020-07443-y
|