[1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA A Cancer J Clinicians, 2021, 71(1): 7-33.
|
[2] |
贺智凤, 蒲玉梅, 胡勤刚. 口腔鳞状细胞癌切缘状态评估及其影响因素分析[J]. 中华口腔医学杂志, 2017, 52(7): 445-449.
|
[3] |
Brennan PA, Dylgjeri F, Coletta RD, et al. Surgical tumour margins and their significance in oral squamous cell carcinoma[J]. J Oral Pathol Med, 2022, 51(4): 311-314.
|
[4] |
Singh A, Qayyumi B, Chaturvedi P. An update on surgical margins in the head neck squamous cell carcinoma: Assessment, clinical outcome, and future directions[J]. Curr Oncol Rep, 2020, 22(8): 82.
doi: 10.1007/s11912-020-00942-7
pmid: 32601821
|
[5] |
Moore GE, Peyton WT. The clinical use of fluorescein in neurosurgery; the localization of brain tumors[J]. J Neurosurg, 1948, 5(4): 392-398.
doi: 10.3171/jns.1948.5.4.0392
pmid: 18872412
|
[6] |
中国医师协会外科医师分会肝脏外科医师委员会. 吲哚菁绿荧光成像技术在肝脏外科应用中国专家共识(2023版)[J]. 中国实用外科杂志, 2023, 43(4): 371-383.
|
[7] |
中华医学会外科学分会胃肠外科学组. 吲哚菁绿近红外光成像技术在腹腔镜胃癌根治术中应用中国专家共识(2023版)[J]. 中国实用外科杂志, 2023, 43(2): 128-135.
|
[8] |
中华医学会外科学分会结直肠外科学组. 吲哚菁绿近红外光成像在腹腔镜结直肠癌手术中应用中国专家共识(2021版)[J]. 中国实用外科杂志, 2021, 41(10): 1098-1103, 1110.
|
[9] |
张誉, 季彤. 吲哚菁绿在口腔癌可视化治疗中的应用[J]. 口腔疾病防治, 2020, 28(2): 118-122.
doi: 10.12016/j.issn.2096-1456.2020.02.011
|
[10] |
王育新, 王志勇, 王永功, 等. 吲哚菁绿荧光成像技术在口腔鳞癌治疗中的应用: 中国专家共识[J]. 中国口腔颌面外科杂志, 2022, 20(1): 1-6.
|
[11] |
Cwalinski T, Polom W, Marano L, et al. Methylene blue-current knowledge, fluorescent properties, and its future use[J]. J Clin Med, 2020, 9(11): 3538.
|
[12] |
Harada Y, Murayama Y, Takamatsu T, et al. 5-aminolevulinic acid-induced protoporphyrin IX fluorescence imaging for tumor detection: Recent advances and challenges[J]. Int J Mol Sci, 2022, 23(12): 6478.
|
[13] |
Mahmoudi K, Garvey KL, Bouras A, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas[J]. J Neurooncol, 2019, 141(3): 595-607.
|
[14] |
Inoue K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer[J]. Int J Urol, 2017, 24(2): 97-101.
doi: 10.1111/iju.13291
pmid: 28191719
|
[15] |
Lopez RF, Lange N, Guy R, et al. Photodynamic therapy of skin cancer: Controlled drug delivery of 5-ALA and its esters[J]. Adv Drug Deliv Rev, 2004, 56(1): 77-94.
|
[16] |
Wang CS, Wang ZH, Zhao T, et al. Optical molecular imaging for tumor detection and image-guided surgery[J]. Biomaterials, 2018, 157: 62-75.
doi: S0142-9612(17)30780-9
pmid: 29245052
|
[17] |
Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity[J]. Adv Drug Deliv Rev, 2015, 91: 3-6.
|
[18] |
Zhu YP, Xiao T, He YJ, et al. Application of near-infrared fluorescence imaging in lingual lymph node screening and drainage pattern observation for tongue cancer[J]. Front Cell Dev Biol, 2022, 10: 986575.
|
[19] |
Gao RW, Teraphongphom NT, van den Berg NS, et al. Determination of tumor margins with surgical specimen mapping using near-infrared fluorescence[J]. Cancer Res, 2018, 78(17): 5144-5154.
doi: 10.1158/0008-5472.CAN-18-0878
pmid: 29967260
|
[20] |
Krishnan G, van den Berg NS, Nishio N, et al. Metastatic and sentinel lymph node mapping using intravenously delivered Panitumumab-IRDye800CW[J]. Theranostics, 2021, 11(15): 7188-7198.
doi: 10.7150/thno.55389
pmid: 34158844
|
[21] |
Rosenthal EL, Moore LS, Tipirneni K, et al. Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer[J]. Clin Cancer Res, 2017, 23(16): 4744-4752.
doi: 10.1158/1078-0432.CCR-16-2968
pmid: 28446503
|
[22] |
Lee YJ, Krishnan G, Nishio N, et al. Intraoperative fluorescence-guided surgery in head and neck squamous cell carcinoma[J]. Laryngoscope, 2021, 131(3): 529-534.
|
[23] |
Wang YX, Xie DY, Wang ZY, et al. Kinetics of indocyanine green: Optimizing tumor to normal tissue fluorescence in image-guided oral cancer surgery applications[J]. Head Neck, 2019, 41(4): 1032-1038.
|
[24] |
Pan JR, Deng H, Hu SQ, et al. Real-time surveillance of surgical margins via ICG-based near-infrared fluorescence imaging in patients with OSCC[J]. World J Surg Oncol, 2020, 18(1): 96.
doi: 10.1186/s12957-020-01874-z
pmid: 32414418
|
[25] |
Wu ZH, Dong YC, Wang YX, et al. Clinical application of indocyanine green fluorescence navigation technology to determine the safe margin of advanced oral squamous cell carcinoma[J]. Gland Surg, 2022, 11(2): 352-357.
doi: 10.21037/gs-22-33
pmid: 35284313
|
[26] |
De Ravin E, Venkatesh S, Harmsen S, et al. Indocyanine green fluorescence-guided surgery in head and neck cancer: A systematic review[J]. Am J Otolaryngol, 2022, 43(5): 103570.
|
[27] |
Xia CW, Zhou QZ, Zhang Q, et al. Comparative study on the diagnostic value of intravenous/peritumoral injection of indocyanine green for metastatic lymph node location in patients with head and neck squamous cell carcinoma (HNSCC)[J]. Ann Transl Med, 2021, 9(6): 507.
doi: 10.21037/atm-21-392
pmid: 33850904
|
[28] |
van der Vorst JR, Schaafsma BE, Verbeek FP, et al. Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients[J]. Oral Oncol, 2013, 49(1): 15-19.
doi: 10.1016/j.oraloncology.2012.07.017
pmid: 22939692
|
[29] |
Lin N, Gao JS, Wang H, et al. Diagnostic value of indocyanine green for sentinel lymph node mapping and lymph node metastasis in oral/oropharyngeal carcinoma[J]. Oral Oncol, 2021, 122: 105563.
|
[30] |
Honda K, Ishiyama K, Suzuki S, et al. Sentinel lymph node biopsy using preoperative computed tomographic lymphography and intraoperative indocyanine green fluorescence imaging in patients with localized tongue cancer[J]. JAMA Otolaryngol Head Neck Surg, 2019, 145(8): 735-740.
|
[31] |
Sugiyama S, Iwai T, Izumi T, et al. CT lymphography for sentinel lymph node mapping of clinically N0 early oral cancer[J]. Cancer Imaging, 2019, 19(1): 72.
doi: 10.1186/s40644-019-0258-9
pmid: 31718717
|
[32] |
Beckler AD, Ezzat WH, Seth R, et al. Assessment of fibula flap skin perfusion in patients undergoing oromandibular reconstruction: Comparison of clinical findings, fluorescein, and indocyanine green angiography[J]. JAMA Facial Plast Surg, 2015, 17(6): 422-426.
|
[33] |
Eguchi T, Kawaguchi K, Basugi A, et al. Intraoperative real-time assessment of blood flow using indocyanine green angiography after anastomoses in free-flap reconstructions[J]. Br J Oral Maxillofac Surg, 2017, 55(6): 628-630.
doi: S0266-4356(17)30098-0
pmid: 28404211
|
[34] |
Betz CS, Zhorzel S, Schachenmayr H, et al. Endoscopic measurements of free-flap perfusion in the head and neck region using red-excited indocyanine green: Preliminary results[J]. J Plast Reconstr Aesthet Surg, 2009, 62(12): 1602-1608.
doi: 10.1016/j.bjps.2008.07.042
pmid: 19036663
|
[35] |
Wu YF, Suo YK, Wang Z, et al. First clinical applications for the NIR-II imaging with ICG in microsurgery[J]. Front Bioeng Biotechnol, 2022, 10: 1042546.
|
[36] |
完颜超杰, 吴中明, 张峰瑞, 等. 吲哚菁绿造影在穿支皮瓣术后血管危象监测中的实验研究[J]. 实用口腔医学杂志, 2022, 38(2): 178-183.
|
[37] |
Schöpper S, Smeets R, Gosau M, et al. Intraoperative ICG-based fluorescence-angiography in head and neck reconstruction: Predictive value for impaired perfusion of free flaps[J]. J Craniomaxillofac Surg, 2022, 50(4): 371-379.
doi: 10.1016/j.jcms.2021.09.020
pmid: 35033440
|
[38] |
Chen KC, Lin CH, Ma H, et al. Outcome analysis of free flap reconstruction for head and neck cancer with intraoperative indocyanine green angiography[J]. J Plast Reconstr Aesthet Surg, 2023, 85: 387-392.
|
[39] |
Lauwerends LJ, van Driel PBAA, Baatenburg de Jong RJ, et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery[J]. Lancet Oncol, 2021, 22(5): e186-e195.
|
[40] |
Seah D, Cheng ZM, Vendrell M. Fluorescent probes for imaging in humans: Where are we now?[J]. ACS Nano, 2023, 17(20): 19478-19490.
doi: 10.1021/acsnano.3c03564
pmid: 37787658
|
[41] |
Bortot B, Mangogna A, di Lorenzo G, et al. Image-guided cancer surgery: A narrative review on imaging modalities and emerging nanotechnology strategies[J]. J Nanobiotechnology, 2023, 21(1): 155.
|
[42] |
Hernot S, van Manen L, Debie P, et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery[J]. Lancet Oncol, 2019, 20(7): e354-e367.
|
[43] |
Jiao JH, Zhang JL, Yang F, et al. Quicker, deeper and stronger imaging: A review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages[J]. Eur J Pharm Biopharm, 2020, 152: 123-143.
doi: S0939-6411(20)30123-5
pmid: 32437752
|
[44] |
Zhu SJ, Tian R, Antaris AL, et al. Near-infrared-II molecular dyes for cancer imaging and surgery[J]. Adv Mater, 2019, 31(24): e1900321.
|
[45] |
Voskuil FJ, Steinkamp PJ, Zhao T, et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery[J]. Nat Commun, 2020, 11(1): 3257.
doi: 10.1038/s41467-020-16814-4
pmid: 32591522
|
[46] |
Steinkamp PJ, Voskuil FJ, van der Vegt B, et al. A standardized framework for fluorescence-guided margin assessment for head and neck cancer using a tumor acidosis sensitive optical imaging agent[J]. Mol Imaging Biol, 2021, 23(6): 809-817.
doi: 10.1007/s11307-021-01614-z
pmid: 34031845
|
[47] |
Rainu SK, Ramachandran RG, Parameswaran S, et al. Advancements in intraoperative near-infrared fluorescence imaging for accurate tumor resection: A promising technique for improved surgical outcomes and patient survival[J]. ACS Biomater Sci Eng, 2023, 9(10): 5504-5526.
doi: 10.1021/acsbiomaterials.3c00828
pmid: 37661342
|
[48] |
Wang YX, Xie DY, Pan JR, et al. A near infrared light-triggered human serum albumin drug delivery system with coordination bonding of indocyanine green and cisplatin for targeting photochemistry therapy against oral squamous cell cancer[J]. Biomater Sci, 2019, 7(12): 5270-5282.
|
[49] |
Tomo S, Miyahara GI, Simonato LE. History and future perspectives for the use of fluorescence visualization to detect oral squamous cell carcinoma and oral potentially malignant disorders[J]. Photodiagnosis Photodyn Ther, 2019, 28: 308-317.
doi: S1572-1000(19)30333-3
pmid: 31600576
|
[50] |
Pal R, Lwin TM, Krishnamoorthy M, et al. Fluorescence lifetime of injected indocyanine green as a universal marker of solid tumours in patients[J]. Nat Biomed Eng, 2023, 7(12): 1649-1666.
doi: 10.1038/s41551-023-01105-2
pmid: 37845517
|