[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34.
|
[2] |
Cramer JD, Burtness B, Le QT, et al. The changing therapeutic landscape of head and neck cancer[J]. Nat Rev Clin Oncol, 2019, 16: 669-683.
doi: 10.1038/s41571-019-0227-z
pmid: 31189965
|
[3] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
[4] |
Ho SY, Wu WS, Lin LC, et al. Cordycepin enhances radiosensitivity in oral squamous carcinoma cells by inducing autophagy and apoptosis through cell cycle arrest[J]. Int J Mol Sci, 2019, 20(21): 5366.
|
[5] |
Li ZN, Liu FY, Kirkwood KL. The p38/MKP-1 signaling axis in oral cancer: Impact of tumor-associated macrophages[J]. Oral Oncol, 2020, 103: 104591.
|
[6] |
Zhu LS, Wang YL, Li R, et al. Circ_BICD2 acts as a ceRNA to promote tumor progression and Warburg effect in oral squamous cell carcinoma by sponging miR-107 to enhance HK2[J]. Am J Transl Res, 2020, 12(7): 3489-3500.
|
[7] |
Ambatipudi S, Gerstung M, Pandey M, et al. Genome-wide expression and copy number analysis identifies driver genes in gingivobuccal cancers[J]. Genes Chromosomes Cancer, 2012, 51(2): 161-173.
|
[8] |
Li JF, Miao BB, Wang SX, et al. Hiplot: A comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization[J]. Brief Bioinform, 2022, 23(4): bbac261.
|
[9] |
Li TW, Fan JY, Wang BB, et al. Timer: A web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108-e110.
|
[10] |
Blanco JL, Porto-Pazos AB, Pazos A, et al. Prediction of high anti-angiogenic activity peptides in silico using a generalized linear model and feature selection[J]. Sci Rep, 2018, 8(1): 15688.
doi: 10.1038/s41598-018-33911-z
pmid: 30356060
|
[11] |
Chen WL, Wang XK, Wu W. Identification of ITGA3 as an oncogene in human tongue cancer via integrated bioinformatics analysis[J]. Curr Med Sci, 2018, 38(4): 714-720.
doi: 10.1007/s11596-018-1935-9
pmid: 30128883
|
[12] |
Yadav M, Pradhan D, Singh RP. Integrated analysis and identification of nine-gene signature associated to oral squamous cell carcinoma pathogenesis[J]. 3 Biotech, 2021, 11(5): 215.
doi: 10.1007/s13205-021-02737-4
pmid: 33928003
|
[13] |
Zou B, Li J, Xu K, et al. Identification of key candidate genes and pathways in oral squamous cell carcinoma by integrated Bioinformatics analysis[J]. Exp Ther Med, 2019, 17(5): 4089-4099.
doi: 10.3892/etm.2019.7442
pmid: 31007745
|
[14] |
Sim YC, Hwang JH, Ahn KM. Overall and disease-specific survival outcomes following primary surgery for oral squamous cell carcinoma: Analysis of consecutive 67 patients[J]. J Korean Assoc Oral Maxillofac Surg, 2019, 45(2): 83-90.
doi: 10.5125/jkaoms.2019.45.2.83
pmid: 31106136
|
[15] |
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression[J]. Genes Dev, 2018, 32(19-20): 1267-1284.
|
[16] |
Zhang WG, Fan JL, Chen Q, et al. SPP1 and AGER as potential prognostic biomarkers for lung adenocarcinoma[J]. Oncol Lett, 2018, 15(5): 7028-7036.
doi: 10.3892/ol.2018.8235
pmid: 29849788
|
[17] |
Choe EK, Yi JW, Chai YJ, et al. Upregulation of the adipokine genes ADIPOR1 and SPP1 is related to poor survival outcomes in colorectal cancer[J]. J Surg Oncol, 2018, 117(8): 1833-1840.
doi: 10.1002/jso.25078
pmid: 29761507
|
[18] |
Fudge NJ, Mearow KM. Extracellular matrix-associated gene expression in adult sensory neuron populations cultured on a laminin substrate[J]. BMC Neurosci, 2013, 14: 15.
doi: 10.1186/1471-2202-14-15
pmid: 23360524
|
[19] |
Xu CJ, Sun LC, Jiang CH, et al. SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway[J]. Biomed Pharmacother, 2017, 91: 1167-1177.
doi: S0753-3322(17)31469-5
pmid: 28531945
|
[20] |
Hubbard NE, Chen QJ, Sickafoose LK, et al. Transgenic mammary epithelial osteopontin (spp1) expression induces proliferation and alveologenesis[J]. Genes Cancer, 2013, 4(5-6): 201-212.
doi: 10.1177/1947601913496813
pmid: 24069507
|
[21] |
Koshizuka K, Hanazawa T, Kikkawa N, et al. Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer[J]. Cancer Sci, 2017, 108(8): 1681-1692.
|
[22] |
Tang XR, Wen X, He QM, et al. MicroRNA-101 inhibits invasion and angiogenesis through targeting ITGA3 and its systemic delivery inhibits lung metastasis in nasopharyngeal carcinoma[J]. Cell Death Dis, 2017, 8(1): e2566.
|
[23] |
Sa KD, Zhang X, Li XF, et al. A miR-124/ITGA3 axis contributes to colorectal cancer metastasis by regulating anoikis susceptibility[J]. Biochem Biophys Res Commun, 2018, 501(3): 758-764.
|
[24] |
Sakaguchi T, Yoshino H, Yonemori M, et al. Regulation of ITGA3 by the dual-stranded microRNA-199 family as a potential prognostic marker in bladder cancer[J]. Br J Cancer, 2017, 116(8): 1077-1087.
|
[25] |
Kurozumi A, Goto Y, Matsushita R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer[J]. Cancer Sci, 2016, 107(1): 84-94.
|
[26] |
陈小坤, 何瑶, 闫美娜, 等. 整合素α3在卵巢上皮细胞癌中的表达及意义[J]. 江苏大学学报(医学版), 2017, 27(4): 356-359.
|
[27] |
O'Connell GC, Treadway MB, Petrone AB, et al. Peripheral blood AKAP7 expression as an early marker for lymphocyte-mediated post-stroke blood brain barrier disruption[J]. Sci Rep, 2017, 7(1): 1172.
doi: 10.1038/s41598-017-01178-5
pmid: 28446746
|
[28] |
Li Y, Huang WQ, Chen LL. LncRNA NEAT1 regulates proliferation, migration and invasion of tongue squamous cell carcinoma cells by regulating miR-339-5p/ITGA3 axis[J]. Shanghai Kou Qiang Yi Xue, 2020, 29(3): 267-274.
|