[1] Bonnet N, Pierroz DD, Ferrari SL. Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis[J]. J Musculoskelet Neuronal Interact, 2008, 8(2):94-104. [2] Elefteriou F, Campbell P, Ma Y. Control of bone remodeling by the peripheral sympathetic nervous system[J]. Calcif Tissue Int, 2014, 94(1):140-151. [3] Huang HH, Brennan TC, Muir MM, et al. Functional alpha1-and beta 2-adrenergic receptors in human osteoblasts[J]. J Cell Physiol, 2009, 220(1):267-275. [4] Suzuki A, Palmer G, Bonjour JP, et al. Regulation of alkaline phosphatase activity by p38 MAP kinase in response to activation of Gi protein-coupled receptors by epinephrine in osteoblast-like cells[J]. Endocrinology, 1999, 140(7):3177-3182. [5] Kellenberger S, Muller K, Richener H, et al. Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors[J]. Bone, 1998, 22(5):471-478. [6] Komoto S, KondoH, Fukuta O, et al. Comparison of β-adrenergic and glucocorticoid signaling on clock gene and osteoblast-related gene expressions in human osteoblast[J]. Chronobiol Int, 2012, 29(1):66-74. [7] Arai M, Nagasawa T, Koshihara Y, et al. Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells[J]. Biochim Biophys Acta, 2003, 1640(2-3):137-142. [8] Kondo H, Takeuchi S, Togari A. β-adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species[J]. Am J Physiol Endocrinol Metab, 2013, 304(5):E507-E515. [9] Elefteriou F. Regulation of bone remodeling by the central and peripheral nervous system[J]. Arch Biochem Biophys, 2008, 473(2):231-236. [10] Aitken SJ, Landao-Bassonga E, Ralston SH, et al. Beta-2 adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms[J]. Arch Biochem Biophys, 2008, 482(1-2):96-103. [11] Li H, Fong C, Chen Y, et al. beta2- and beta3-, but not beta1-adrenergic receptors are involved in osteogenesis of mouse mesenchymal stem cells via cAMP/PKA signaling[J]. Arch Biochem Biophys, 2010, 496(2):77-83. [12] 王承勇, 林海, 王锦,等. 失交感神经支配与新骨形成及改建[J]. 福建医科大学学报, 2014,48(1):29-33. [13] Farr JN, Charkoudian U, Barnes JN, et al. Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women[J]. J ClinEndocrinol Metab, 2012, 97(11):4219-4227. [14] Bajayo A, Bar A, Denes A, et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual[J]. Proc Natl Acad Sci, 2012, 109(38):15455-15460. [15] Lips KS, Kauschke V, Hartmann S, et al. Cholinergic nerve fibers in bone defects of a rat osteoporosis model and their regulation by implantation of bone substitution materials[J]. J Musculoskelet Neuronal Interact, 2014, 14(2):173-188. [16] Adamus MA, Dabrowski ZJ. Effect of the neuropeptide substance P on the rat bone marrow-derived osteogenic cells in vitro[J]. J Cell Biochem, 2001, 81(3):499-506. [17] An YS, Lee E, Kang MH, et al. Substance P stimulates the recovery of bone marrow after the irradiation[J]. J Cell Physiol, 2011, 226(5):1204-1213. [18] Wang L, Zhao R, Shi X, et al. Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro[J]. Bone, 2009, 45(2):309-320. [19] Sun HB, Chen JC, Liu Q, et al. Substance P stimulates differentiation of mice osteoblast through up-regulating Osterix expression[J]. Chin J Traumatol, 2010, 13(1):46-50. [20] Shih C, Bernard GW. Neurogenic substance P stimulates osteogenesis in vitro[J]. Peptides, 1997, 18(2):323-326. [21] Fu S, Jin D, Liu S, et al. Protective Effect of neuropeptide substance P on bone marrow mesenchymal stem Cells against apoptosis induced by serum deprivation[J]. Stem Cells Int, 2015, 2015:270328. [22] Wang L, Zhao R, Shi X, et al. Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro[J]. Bone, 2009, 45(2):309-320. [23] 陀泳华. 降钙素基因相关肽(CGRP)对人脐静脉血管内皮细胞(HUVECs)的生物学效应及其机制研究[D]. 南方医科大学, 2012. [24] Naot D, Cornish J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism[J]. Bone, 2008, 43(5):813-818. [25] Yoo YM, Kwag JH, Kim KH, et al. Effects of neuropeptides and mechanical loading on bone cell resorption in vitro[J]. Int J Mol Sci, 2014, 15(4):5874-5883. [26] Fukuda T, Takeda S. Control of bone remodeling by nervous system. Regulation of bone metabolism by appetite regulating neuropeptides[J]. Clin Calcium, 2010, 20(12):1807-1813. [27] Elefteriou F. Neuronal signaling and the regulation of bone remodeling[J]. Cell Mol Life Sci, 2005, 62(19-20):2339-2349.. [28] Oury F, Yadav VK, Wang Y, et al. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons[J]. Genes Dev, 2010, 24(20):2330-2342. [29] Quiros-Gonzalez I, Yadav VK. Central genes, pathways and modules that regulate bone mass[J]. Arch Biochem Biophys, 2014, 561(6):130-136. [30] Walther DJ, Peter JU, Bashammakh S, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform[J]. Science, 2003, 299(5603):76. [31] Hinoi E, Gao N, Jung DY, et al. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity[J]. J Cell Biol, 2008, 183(7):1235-1242. [32] Turner RT, Kalra SP, Wong CP, et al. Peripheral leptin regulates bone formation.[J]. JBoneMinerRes, 2013, 28(1):22-34. [33] Ma WH, Liu YJ, Wang W, et al. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication[J]. Braz J Med Biol Res, 2015, 48(4):299-307. [34] Nunes AF, Liz MA, Franquinho F, et al. NeuropeptideY expression and function during osteoblast differentiation - insights from transthyretin knockout mice[J]. FEBS J, 2010, 277(1):263-275. [35] Teixeira L, Sousa DM, Nunes A F, et al. NPY revealed as a critical modulator of osteoblast function in vitro: new insights into the role of Y1 and Y2 receptors[J]. J Cell Biochem, 2009, 107(5):908-916. [36] Amano S, Arai M, Goto S, et al. Inhibitory effect of NPY on isoprenaline-induced osteoclastogenesis in mouse bone marrow cells[J]. BiochimBiophys Acta, 2007, 1770(6):966-973. [37] Roth L, Koncina E, Satkauskas S, et al. The many faces of semaphorins: from development to pathology[J]. Cell Mol Life Sci, 2009, 66(4):649-666. [38] Tian L, Rauvala H, Gahmberg CG. Neuronal regulation of immune responses in the central nervous system[J]. Trends Immunol, 2009, 30(2):91-99. [39] Potiron V, Nasarre P, Roche J, et al. Semaphorin signaling in the immune system[J]. Adv Exp Med, 2007, 600(8):132-144. [40] Adams RH, Eichmann A. Axon guidance molecules in vascular patterning[J]. Cold Spring Harb Perspect Biol, 2010, 2(5):a001875. [41] Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis[J]. Nat Rev Cancer, 2008, 8(8):632-645. [42] Hayashi M, Nakashima T, Taniguchi M, et al. Osteoprotection by semaphorin 3A[J]. Nature, 2012, 485(7396):69-74. [43] Fukuda T, Takeda S, Xu R, et al. Sema3A regulates bone-mass accrual through sensory innervations[J]. Nature, 2013, 497(7450):490-493. [44] Xu R. Semaphorin 3A: A new player in bone remodeling[J]. Cell Adh Migr, 2014, 8(1):5-10. |