[1] Mauney J, Olsen BR, Volloch V. Matrix remodeling as stem cell recruitment event: a novel in vitro model for homing of human bone marrow stromal cells to the site of injury shows crucial role of extracellular collagen matrix [J]. Matrix Biol, 2010, 29(8):657-663.
[2] Gallo J, Raska M, Mrazek F, et al. Bone remodeling, particle disease and individual susceptibility to periprosthetic osteolysis [J]. Physiol Res, 2008, 57(3):339-349.
[3] Mundy GR. Pathogenesis of osteoporosis and challenges for drug delivery[J]. Adv Drug Deliv Rev, 2000, 42(3):165-173.
[4] Cosman F, Nieves J, Zion M, et al. Daily and cyclic parathyroid hormone in women receiving alendronate [J]. N Engl J Med, 2005, 353(6):566-575.
[5] Martin J, Shearer, Paul N.Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis [J]. J Lipid Res, 2014, 55(3):345-362.
[6] Kristensen SR, Abrahamsen B, Madsen JS, et al. Venous thrombosis is not increased in younger women on genuine oestrogen postmenopausal hormonal replacement therapy: results from the Danish Osteoporosis Prevention Study (DOPS) [J]. Thromb Haemost, 2006, 95(5):915-916.
[7] Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis [J]. N Engl J Med, 2001, 344(19):1434-1441.
[8] Sato T, Watanabe K, Masuhara M, et al. Production of IL-7 is increased in ovariectomized mice, but not RANKL mRNA expression by osteoblasts/stromal cells in bone, and IL-7 enhances generation of osteoclast precursors in vitro [J]. J Bone Miner Metab, 2007, 25(1):19-27.
[9] Mozzati M, Arata V, Gallesio G. Tooth extraction in osteoporotic patients taking oral bisphosphonates[J]. Osteoporos Int, 2013, 24(5):1707-1712.
[10] Filleul O, Crompot E, Saussez S. Bisphosphonate-induced osteonecrosis of the jaw: a review of 2,400 patient cases [J]. J Cancer Res Clin Oncol, 2010, 136(8):1117-1124.
[11] Kobayashi Y, Ueyama S, Arai Y, et al. The active metabolite of leflunomide, inhibits both the generation of and the bone-resorbing activity of osteoclasts by acting directly on cells of the osteoclast lineage [J]. J Bone Miner Metab, 2004, 22(4):318-328.
[12] Andersen TL, Soe K, Sondergaard TE, et al. Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells [J]. Br J Haematol, 2010, 148(4):551-561.
[13] Liu X. Bone site-specific delivery of siRNA [J]. J Biomed Res, 2016, 30(4):264-271.
[14] Hirabayashi H, Fujisaki J. Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents [J]. Clin Pharmacokinet, 2003, 42(15):1319-1330.
[15] Xinluan W, Yuxiao L, Helena NH, et al. Systemic drug delivery systems for bone tissue regeneration- a mini review [J]. Curr Pharm Des, 2015, 21(12):1575-1583.
[16] Hirabayashi H, Takahashi T, Fujisaki J, et al. Bone-specific delivery and sustained release of diclofenac, a non-steroidal anti-inflammatory drug, via bisphosphonic prodrug based on the Osteotropic Drug Delivery System (ODDS) [J]. J Control Release, 2001, 70(1-2):183-191.
[17] Wang D, Miller SC, Kopeckova P, et al. Bone-targeting macromolecular therapeutics[J]. Adv Drug Deliv Rev, 2005, 57(7):1049-1076.
[18] Li X, Tsibouklis J, Weng T, et al. Nano carriers for drug transport across the blood-brain barrier [J]. J Drug Target, 2016, 19(1):1-12.
[19] Marit G, Mark G. Papich, John T, Luca G. Pharmacodynamics of doxycycline and tetracycline against staphylococcus pseudintermedius: proposal of canine-specific breakpoints for doxycycline [J]. J Clin Microbiol, 2013, 51(11): 3547-3554.
[20] Albert A, Rees CW. Avidity of the tetracyclines for the cations of metals [J]. Nature, 1956, 177(4505):433-434.
[21] Skinner HC, Nalbandian J. Tetracyclines and mineralized tissues: review and perspectives [J]. Yale J Biol Med, 1975, 48(5):377-397.
[22] Ibsen KH. Studies on the association of the tetracyclines with mineralized tissue[J]. Clin Orthop Relat Res, 1985,(200):85-86.
[23] Perrin DD. Binding of tetracyclines to bone [J]. Nature, 1965, 208(5012):787-788.
[24] Kinirons MJ. Reduction in evidence in children's teeth of use of tetracyclines [J]. Br Med J, 1983, 287(6404): 1515.
[25] Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice[J]. Mayo Clin Proc, 2008, 83 (9) :1032-1045.
[26] van beek E, Lowik C, van der Pluijm G, et al. The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: a clue to the mechanism of action of nitrogen-containing bisphosphonates [J]. J Bone Miner Res, 1999, 14(5):722-729.
[27] Wolf SM, Jones C. Designing oversight for nanomedicine research in human subjects: systematic analysis of exceptional oversight for emerging technologies [J]. J Nanopart Res, 2011, 13(4):1449-1465.
[28] Giger EV, Castagner B, Raikkonen J, et al. siRNA transfection with calcium phosphate nanoparticles stabilized with PEGylated chelators[J]. Adv Healthc Mater, 2013, 2(1):134-144.
[29] Mundy GR, Chen D, Zhao M, et al. Growth regulatory factors and bone [J]. Rev Endocr Metab Disord, 2001, 2(1): 105-115.
[30] Mansukhani A, Bellosta P, Sahni M, et al. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts [J]. J Cell Biol, 2000, 149(6):1297-1308.
[31] Funahashi, Y. Current status of VEGF-targeted therapy and multiple-targeted receptor tyrosine kinase inhibitors targeting VEGF and FGF-receptors [J]. Nihon Yakurigaku Zasshi, 2010, 136(4):204-209.
[32] Liang C, Guo B, Wu H, et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy [J]. Nat Med, 2015, 21(3):288-294.
[33] Midura RJ, Wang A, Lovitch D, et al. Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures [J]. J Biol Chem, 2004, 279(24):25464-25473.
[34] Anai N, Kothari, Matthew L, et al. Osteopontin--a master regulator of epithelial-mesenchymal transition [J]. J Clin Med, 2016, 5(4):39.
[35] Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein [J]. Nature, 1997, 386(6620):78-81.
[36] Bennick A, Cannon M, Madapallimattam G. The nature of the hydroxyapatite-binding site in salivary acidic proline-rich proteins [J]. Biochem J, 1979, 183(1):115-126.
[37] Kasugai S, Fujisawa R, Waki Y, et al. Selective drug delivery system to bone: small peptide (Asp)6 conjugation [J]. J Bone Miner Res, 2000, 15(5):936-943.
[38] Yokogawa K,Toshima K,Yamoto K, et al. Pharmacokinetic advantage of an intranasal preparation of a novel anti-osteoporosis drug, L-Asp-hexapeptide-conjugated estradiol [J]. Biol Pharm Bull, 2006, 29(6):1229-1233.
[39] Wang D, Miller S, Sima M, et al. Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems [J]. Bioconjug Chem, 2003, 14(5):853-859.
[40] Zhu Q, Gibson MP, Liu Q, et al. Proteolytic processing of dentin sialophosphoprotein (DSPP) is essential to dentinogenesis [J]. J Biol Chem, 2012, 287(36):30426-30435.
[41] Cross KJ, Huq NL, Reynolds EC. Protein dynamics of bovine dentin phosphophoryn [J].J Pept Res 2005, 66(2): 59-67.
[42] Yarbrough DK, Hagerman E, Eckert R, et al. Specific binding and mineralization of calcified surfaces by small peptides [J]. Calcif Tissue Int, 2010, 86(1):58-66.
[43] Zhang G, Guo B, Wu H, et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy [J]. Nat Med, 2012, 18(2):307-314.
[44] Sun Y, Ye X, Cai MX, et al. Osteoblast-targeting-peptide modified nanoparticle for siRNA/microRNA delivery [J]. ACS Nano, 2016, 10(6):5759-5768. |