[1] Brunello G, Elsayed H, Biasetto L. Bioactive Glass and Silicate-Based Ceramic Coatings on Metallic Implants: Open Challenge or Outdated Topic?[J]. Materials (Basel), 2019, 12(18):2929.
[2] Annunziata M, Guida L. The Effect of Titanium Surface Modifications on Dental Implant Osseointegration[J]. Front Oral Biol, 2015, 17: 62-77.
[3] Smeets R, Stadlinger B, Schwarz F, et al. Impact of Dental Implant Surface Modifications on Osseointegration[J]. Biomed Res Int, 2016, 6285620.
[4] Parnia F, Yazdani J, Javaherzadeh V, et al. Overview of Nanoparticle Coating of Dental Implants for Enhanced Osseointegration and Antimicrobial Purposes[J]. J Pharm Pharm Sci, 2017, 20(0): 148-160.
[5] 刘宣勇. 生物医用钛材料及其表面改性[M]. 化学工业出版社, 2009.
[6] Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance[J]. Biomaterials, 2006, 27(11): 2331-2339.
[7] Schwarz F, Becker K, Sahm N, et al. The prevalence of peri-implant diseases for two-piece implants with an internal tube-in-tube connection: a cross-sectional analysis of 512 implants[J]. Clin Oral Implants Res, 2015, 28(1): 24-28.
[8] Buser D, Mericske-Stern R, Bernard JP, et al. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants[J]. Clin Oral Implants Res, 2010, 8(3): 161-172.
[9] Hench LL, Kokubo T. Properties of bioactive glasses and glass-ceramics[M]. 1998.
[10] Hench LL. The story of Bioglass■[J]. J Mater Sci Mater M, 2006, 17(11): 967-978.
[11] Sumner DR, Galante JO. Determinants of stress shielding: design versus materials versus interface[J]. Clin Orthop Relat Res, 1992, (274): 202-212.
[12] Roy M, Bandyopadhyay A, Bose S. Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants[J]. Surf Coat Technol, 2011, 205(8-9): 2785-2792.
[13] Mejias A, Candidato RT, Pawlowski L, et al. Mechanical properties by instrumented indentation of solution precursor plasma sprayed hydroxyapatite coatings: Analysis of microstructural effect[J]. Surf Coat Technol, 2016, 298: 93-102.
[14] Malhotra A, Habibovic P. Calcium Phosphates and Angiogenesis: Implications and Advances for Bone Regeneration[J]. Trends Biotechnol, 2016, 34(12): 983-992.
[15] Ozgur GO, Kazancioglu HO, Demirtas N, et al. Risk Factors Associated With Implant Marginal Bone Loss: A Retrospective 6-Year Follow-Up Study[J]. Implant Dent, 2016, 25(1): 122-127.
[16] Almaguer-Flores A, Silva-Bermudez P, Galicia R, et al. Bacterial adhesion on amorphous and crystalline metal oxide coatings[J]. Mater Sci Eng C Mater Biol Appl, 2015, 57: 88-99.
[17] Dos Santos MV, Elias CN, Cavalcanti Lima J H. The Effects of Superficial Roughness and Design on the Primary Stability of Dental Implants[J]. Clin Implant Dent Relat Res, 2011, 13(3): 215-223.
[18] Ogunsalu C, Archibald A, Watkins J, et al. Comparative Study of the Osteoblastic Activity of Two Implant Syste,ms (Endopore versus Entegra) Utilizing Single Photon Emission Computed Tomography (SPECT): Experimental Study in Pigs Model[J]. West Indian Med J 2013, 62(2): 145-148.
[19] Le Guéhennec L , Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater, 2007, 23(7): 844-854.
[20] Coelho PG, Granjeiro JM, Romanos GE, et al. Basic Research Methods and Current Trends of Dental Implant Surfaces[J]. J Biomed Mater Res B Appl Biomater, 2009, 88(2): 579-596.
[21] Ehrenfest DMD, Coelho PG, Kang B-S, et al. Classification of osseointegrated implant surfaces: materials, chemistry and topography[J]. Trends Biotechnol, 2010, 28(4): 198-206.
[22] Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1 - Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them[J]. Int J Prosthodont, 2004, 17(5): 536-543.
[23] Wennerberg A, Galli S, Albrektsson T. Current knowledge about the hydrophilic and nanostructured SLActive surface[J]. Clin Cosmet Investig Dent, 2011, 3: 59-67.
[24] Li DH, Ferguson SJ, Beutler T, et al. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants[J]. J Biomed Mater Res, 2002, 60(2): 325-332.
[25] Buser D, Janner S F M, Wittneben J-G, et al. 10-Year Survival and Success Rates of 511 Titanium Implants with a Sandblasted and Acid-Etched Surface: A Retrospective Study in 303 Partially Edentulous Patients[J]. Clin Implant Dent Relat Res, 2012, 14(6): 839-851.
[26] Xiang L, Hu X, Mehrhof J, et al. Clinical evaluation of a fixed (retrievable) implant-supported prosthesis in the edentulous jaw: A 5-year report[J]. Quintessence Int, 2010, 41(4): 277-283.
[27] Degidi M, Piattelli A, Gehrke P, et al. Clinical outcome of 802 immediately loaded 2-stage submerged implants with a new grit-blasted and acid-etched surface: 12-month follow-up[J]. Int J Oral Maxillofac Implants, 2006, 21(5): 763-768.
[28] Coelho P G, Jimbo R, Tovar N, et al. Osseointegration: Hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales[J]. Dent Mater, 2015, 31(1): 37-52.
[29] Kim SB, Kim YK, Kim SG, et al. Comparative Study of the Early Loading of Resorbable Blasting Media and Sandblasting with Large-grit and Acid-etching Surface Implants: A Retrospective Cohort Study[J]. Maxillofac Plast Reconstr Surg, 2014, 36(6): 247-252.
[30] Rocci A, Rocci M, Rocci C, et al. Immediate Loading of Branemark System TiUnite and Machined-Surface Implants in the Posterior Mandible, Part II: A Randomized Open-Ended 9-Year Follow-up Clinical Trial[J]. Int J Oral Maxillofac Implants, 2013, 28(3): 891-895.
[31] Sul YT, Lyon E, Wennerberg A. Surface characteristics of electrochemically oxidized implants and acid-etched implants: Surface chemistry, morphology, pore configurations, oxide thickness, crystal structure, and roughness[J]. Int J Oral Maxillofac Implants, 2008, 23(4): 631-640.
[32] Jungner M, Lundqvist P, Lundgren S. Oxidized titanium implants (Nobel Biocare (R) TiUnite (TM)) compared with turned titanium implants (Nobel Biocare (R) mark III (TM)) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol[J]. Clin Oral Implants Res, 2005, 16(3): 308-312.
[33] Rodriguez Y Baena R, Arciola C R, Selan L, et al. Evaluation of bacterial adhesion on machined titanium, Osseotite (R) and Nanotite (R) discs[J]. Int J Artif Organs, 2012, 35(10): 754-761.
[34] Mendes VC, Moineddin R, Davies J E. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces[J]. Biomaterials, 2007, 28(32): 4748-4755.
[35] ?魻stman PO, Wennerberg A, Ekestubbe A, et al. Immediate Occlusal Loading of NanoTite (TM) Tapered Implants: A Prospective 1-Year Clinical and Radiographic Study[J]. Clin Implant Dent Relat Res, 2013, 15(6): 809-818.
[36] Do Carmo Filho L C, Marcello-Machado R M, De Castilhos E D, et al. Can implant surfaces affect implant stability during osseointegration? A randomized clinical trial[J]. Bra Oral Res, 2018, 32:e110.
[37] Cannizzaro G, Felice P, Leone M, et al. Immediate versus early loading of 6.5 mm-long flapless-placed single implants: a 4-year after loading report of a split-mouth randomised controlled trial[J]. Eur J Oral Implantol, 2012, 5(2): 111-121.
[38] Gallagher E A, Lamoriniere S, Mcgarry P. Finite element investigation into the use of carbon fibre reinforced PEEK laminated composites for distal radius fracture fixation implants[J]. Med Eng Phys, 2019, 67: 22-32.
[39] Siddiqi A, Payne A G T, De Silva R K, et al. Titanium allergy: could it affect dental implant integration?[J]. Clin Oral Implants Res, 2011, 22(7): 673-680.
[40] Sandler J, Werner P, Shaffer M S P, et al. Carbon-nanofibre-reinforced poly(ether ether ketone) composites[J]. Com Part a-Appl S, 2002, 33(8): 1033-1039.
[41] Skinner HB. Composite Technology for Total Hip Arthroplasty[J]. Clin Orthop Relat Res, 1988, (235): 224-236.
[42] Rho J Y, Ashman R B, Turner C H. Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements[J]. J Biomech, 1993, 26(2): 111-119.
[43] Zhang M, Matinlinna J P. E-Glass Fiber Reinforced Composites in Dental Applications[J]. Silicon, 2012, 4(1): 73-78.
[44] Hanasono M M, Goel N, Demonte F. Calvarial Reconstruction With Polyetheretherketone Implants[J]. Ann Plast Surg, 2009, 62(6): 653-655.
[45] Gowda Em, Lyer SR, Verma K, et al. Evaluation of PEEK composite dental implants: A comparison of two different loading protocols[J]. J Dent Res and Rep, 2018, 1(1):2-5.
[46] Barkarmo S, Andersson M, Currie F, et al. Enhanced bone healing around nanohydroxyapatite-coated polyetheretherketone implants: An experimental study in rabbit bone[J]. J Biomater Appl, 2014, 29(5): 737-747.
[47] Poulsson A H C, Eglin D, Zeiter S, et al. Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model[J]. Biomaterials, 2014, 35(12): 3717-3728.
[48] Rochford E T J, Subbiahdoss G, Moriarty T F, et al. An in vitro investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK[J]. J Biomed Mater Res A, 2014, 102(12): 4427-4434.
[49] Lu T, Liu X, Qian S, et al. Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone[J]. Biomaterials, 2014, 35(22): 5731-5740.
[50] Kirsten A, Hausmann A, Weber M, et al. Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants[J]. J Dent Res, 2015, 94(2): 297-303.
[51] Funato A, Ogawa T. Photofunctionalized Dental Implants: A Case Series in Compromised Bone[J]. Int J Oral Maxillofac Implants, 2013, 28(6): 1589-1601. |