[1] Liao HT, Chen CT. Osteogenic potential: Comparison between bone marrow and adipose-derived mesenchymal stem cells[J]. World J Stem Cells, 2014, 6(3):288-295.
[2] 徐星天,王佐林. 组织工程成骨修复口腔颌面骨缺损的研究进展[J]. 口腔颌面外科杂志, 2008, 18(6):429-433.
[3] 张兴文,王佐林. 组织工程骨与Bio-Oss修复大鼠下颌骨缺损的比较研究[J]. 口腔颌面外科杂志, 2009, 19(5):329-334. [4] Kedong S, Wenfang L, Yanxia Z, et al. Dynamic fabrication of tissue-engineered bone substitutes based on derived cancellous bone scaffold in a spinner flask bioreactor system[J]. Appl Biochem Biotechnol, 2014, 174(4):1331-1343.
[5] Yu BH, Zhou Q, Wang ZL. Periodontal ligament versus bone marrow mesenchymal stem cells in combination with Bio-Oss scaffolds for ectopic and in situ bone formation: A comparative study in the rat[J]. J Biomater Appl, 2014, 29(2):243-253.
[6] Zuk PA. The adipose-derived stem cell: looking back and looking ahead[J]. Mol Biol Cell, 2010, 21(11):1783-1787.
[7] Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells: the great WAT hope[J]. Trends Endocrinol Metab, 2012, 23(6):270-277.
[8] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2):211-228 .
[9] Yoshimura K, Suga H, Eto H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation[J]. Regen Med, 2009, 4(2):265-273.
[10] Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance[J]. J Clin Invest, 2003, 112(12):1821-1830.
[11] Prunet-Marcassus B, Cousin B, Caton D, et al. From heterogeneity to plasticity in adipose tissues: site-specific differences[J]. Exp Cell Res, 2006, 312(6):727-736.
[12] Ren Y, Wu H, Zhou X, et al. Isolation, expansion and differentiation of goat adipose-derived stem cells[J]. Res Vet Sci, 2012, 93(1):404-411.
[13] Schwarz C, Leicht U, Rothe C, et al. Effects of different media on proliferation and differentiation capacity of canine, equine and porcine adipose derived stem cells[J]. Res Vet Sci, 2012, 93(1):457-462.
[14] Williams KJ, Picou AA, Kish SL, et al. Isolation and characterization of porcine adipose tissue-derived adult stem cells[J]. Cells Tissues Organs, 2008, 188(3):251-258.
[15] Neupane M, Chang CC, Kiupel M, et al. Isolation and characterization of canine adipose-derived mesenchymal stem cells[J]. Tissue Eng Part A, 2008, 14(6):1007-1015.
[16] 彭智, 陈崎, 贾振华, 等. 组织块培养法扩增人脂肪源性干细胞的生物学特征鉴定[J]. 中国组织工程研究与临床康复, 2010, 14(36):6689-6694.
[17] Zeng G, Lai K, Li J, et al. A rapid and efficient method for primary culture of human adipose-derived stem cells[J]. Organogenesis, 2013, 9(4):287-295.
[18] Tapp H, Hanley EN Jr, Patt JC, et al. Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair[J]. Exp Biol Med, 2009, 234(1):1-9.
[19] Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies[J]. Cell Tissue Res, 2008,332(3):415-426.
[20] Gronthos S, Franklin DM, Leddy HA,et al. Surface protein characterization of human adipose tissue-derived stromal cells[J]. J Cell Physiol, 2001, 189(1):54-63.
[21] Schaffler A, Büchler C. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies[J]. Stem Cells, 2007, 25(4):818-827.
[22] Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)[J]. Cytotherapy, 2013, 15(6): 641-648.
[23] Safford KM, Hicok KC, Safford SD, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells[J]. Biochem Biophys Res Commun, 2002, 294(2):371-379.
[24] Okura H, Komoda H, Fumimoto Y, et al. Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters[J]. J Artif Organs, 2009, 12(2):123-130.
[25] Konno M, Hamabe A, Hasegawa S, et al. Adipose-derived mesenchymal stem cells and regenerative medicine[J]. Dev Growth Differ, 2013, 55(3):309-318.
[26] Shen FH, Werner BC, Liang H, et al. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation[J]. Spine J, 2013, 13(1):32-43.
[27] Yu B, Wang Z. Effect of concentrated growth factors on beagle periodontal ligament stem cells in vitro[J]. Mol Med Rep, 2014, 9(1):235-242.
[28] Silva AR, Paula AC, Martins TM, et al. Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells[J]. J Biomed Mater Res A, 2014, 102(3):818-827.
[29] Wang YH, Wu JY, Chou PJ, et al. Characterization and evaluation of the differentiation ability of human adipose-derived stem cells growing in scaffold-free suspension culture[J]. Cytotherapy, 2014,,16(4):485-495.
[30] Kim KI, Park S, Im GI. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells[J]. Biomaterials, 2014, 35(17):4792-4804.
[31] Wang J, Ye Y, Tian H, et al. In vitro osteogenesis of human adipose-derived stem cells by coculture with human umbilical vein endothelial cells[J]. Biochem Biophys Res Commun, 2011, 412(1):143-149.
[32] 刘鑫, 王佐林. 上颌窦底提升术骨移植材料的应用评价[J]. 口腔颌面外科杂志, 2014, 24(6):457-461.
[33] Guda T, Appleford M, Oh S, et al. A cellular perspective to bioceramic scaffolds for bone tissue engineering: the state of the art[J]. Curr Top Med Chem, 2008, 8(4):290-299.
[34] 李琳,王佐林. 组织工程技术在牙髓组织再生中的研究进展[J]. 口腔颌面外科杂志, 2014, 24(5):392-396.
[35] 曹谊林. 组织工程学[M]. 北京:科学出版社,2008:249-250.
[36] Sándor GK, Suuronen R. Combining adipose-derived stem cells, resorbable scaffolds and growth factors: an overview of tissue engineering[J]. J Can Dent Assoc, 2008, 74(2):167-170.
[37] Pullisaar H, Reseland JE, Haugen HJ, et al. Simvastatin coating of TiO2 scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2014, 447(1):139-144.
[38] Zhan J, Singh A, Zhang Z, et al. Multifunctional aliphatic polyester nanofibers for tissue engineering[J]. Biomatter, 2012, 2(4):202-212.
[39] Polan JL, Morse B, Wetherold S, et al. VEGF analysis induced by endothelialized gas-plasma treated D,L-PLA scaffolds[J]. Cardiovasc Radiat Med, 2002, 3(3-4):176-182.
[40] Xia Y, Peng SS, Xie LZ, et al. A novel combination of nano-scaffolds with micro-scaffolds to mimic extracellularmatrices improve osteogenesis[J]. J Biomater Appl, 2013, 29(1):59-71.
[41] Li X, Liu H, Niu X, et al. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo[J]. Biomaterials, 2012, 33(19):4818-4127.
[42] Chen L, Lu X, Li S, et al. Sustained delivery of BMP-2 and platelet-rich plasma-released growth factors contributes to osteogenesis of human adipose-derived stem cells[J]. Orthopedics, 2012, 35(9):e1402-e1409.
[43] Lin CY, Chang YH, Li KC, et al. The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair[J]. Biomaterials, 2013, 34(37):9401-9412.
[44] Patel ZS, Young S, Tabata Y, et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model[J]. Bone, 2008, 43(5):931-940.
[45] Jaklenec A, Hinckfuss A, Bilgen B, et al. Sequential re-lease of bioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds[J]. Biomaterials, 2008, 29(10):1518-1525.
[46] Pountos I, Georgouli T, Henshaw K, et al. The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone[J]. J Orthop Trauma, 2010, 24(9):552-556.
[47] Leong DT, Abraham MC, Gupta A, et al. ATF5, a possible regulator of osteogenic differentiation in human adipose-derived stem cells[J]. J Cell Biochem, 2012, 113(8):2744-2753.
[48] Cruz AC, Silva ML, Caon T, et al. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells[J]. J Appl Oral Sci, 2012, 20(6):628-635.
[49] Jin Y, Zhang W, Liu Y, et al. rhPDGF-BB via ERK pathway osteogenesis and adipogenesis balancing in ADSCs for critical-sized calvarial defect repair[J]. Tissue Eng Part A, 2014, 20(23-24):3303-3313.
[50] Yang X, Gong P, Lin Y, et al. Cyclic tensile stretch modulates osteogenic differentiation of adipose-derived stem cells via the BMP-2 pathway[J]. Arch Med Sci, 2010, 6(2):152-159.
[51] Gu H, Guo F, Zhou X, et al. The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway[J]. Biomaterials, 2011, 32(29):7023-7033.
[52] Li HX, Luo X, Liu RX, et al. Roles of Wnt/beta-catenin signaling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells[J]. Mol Cell Endocrinol, 2008, 291(1-2):116-124.
[53] Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential[J]. Cytotherapy, 2003, 5(5):362-369.
[54] Zanetti AS, Sabliov C, Gimble JM, et al. Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration[J]. J Biomed Mater Res B Appl Biomater, 2013, 101(1):187-199. |