[1] Grabner A, Amaral AP, Schramm K, et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy[J]. Cell Metab, 2015, 22(6):1020-1032.
[2] Kuro-O M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing[J]. Nature, 1997, 390(6655):45-51.
[3] Chen G, Liu Y, Goetz R, et al. alpha-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling[J]. Nature, 2018, 553(7689):461-466.
[4] Shimada T, Urakawa I, Yamazaki Y, et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa[J]. Biochem Biophys Res Commun, 2004, 314(2):409-414.
[5] Sitara D, Razzaque MS, Hesse M, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice[J]. Matrix Biol, 2004, 23(7):421-432.
[6] Farrow EG, Davis SI, Summers LJ, et al. Initial FGF23-mediated signaling occurs in the distal convoluted tubule[J]. J Am Soc Nephrol, 2009, 20(5):955-960.
[7] Kagi L, Bettoni C, Pastor-Arroyo EM, et al. Regulation of vitamin D metabolizing enzymes in murine renal and extrarenal tissues by dietary phosphate, FGF23, and 1,25(OH)2D3[J]. PLoS One, 2018, 13(5):e0195427.
[8] Bar L, Feger M, Fajol A, et al. Insulin suppresses the production of fibroblast growth factor 23 (FGF23)[J]. Proc Natl Acad Sci U S A, 2018, 115(22):5804-5809.
[9] Beck L, Karaplis AC, Amizuka N, et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities[J]. Proc Natl Acad Sci U S A, 1998, 95(9):5372-5377.
[10] Sitara D, Kim S, Razzaque MS, et al. Genetic evidence of serum phosphate-independent functions of FGF-23 on bone[J]. PLoS Genet, 2008, 4(8):e1000154.
[11] Bon N, Frangi G, Sourice S, et al. Phosphate-dependent FGF23 secretion is modulated by PiT2/Slc20a2[J]. Mol Metab, 2018, 11:197-204.
[12] Haussler MR, Whitfield GK, Kaneko I, et al. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis[J]. Rev Endocr Metab Disord, 2012, 13(1):57-69.
[13] Nociti FH, Jr., Foster BL, Tran AB, et al. Vitamin D represses dentin matrix protein 1 in cementoblasts and osteocytes [J]. J Dent Res, 2014, 93(2):148-154.
[14] Rhee Y, Bivi N, Farrow E, et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo[J]. Bone, 2011, 49(4):636-643.
[15] Larsson T, Davis SI, Garringer HJ, et al. Fibroblast growth factor-23 mutants causing familial tumoral calcinosis are differentially processed [J]. Endocrinology, 2005, 146(9):3883-3891.
[16] Tagliabracci VS, Engel JL, Wiley SE, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis[J]. Proc Natl Acad Sci U S A, 2014, 111(15):5520-5525.
[17] Zhang Q, Lin S, Liu Y, et al. Dmp1 null mice develop a unique osteoarthritis-like phenotype[J]. Int J Biol Sci, 2016, 12(10):1203-1212.
[18] Kinoshita S, Kawai M. The FGF23/KLOTHO regulatory network and its roles in human disorders[J]. Vitam Horm, 2016, 101:151-174.
[19] Carpenter TO, Imel EA, Ruppe MD, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia[J]. J Clin Invest, 2014, 124(4):1587-1597.
[20] Shalhoub V, Shatzen EM, Ward SC, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality[J]. J Clin Invest, 2012, 122(7):2543-2553. |