[1] |
Thivichon-Prince B, Couble ML, Giamarchi A, et al. Primary Cilia of odontoblasts: Possible role in molar morphogenesis[J]. J Dent Res, 2009, 88(10): 910-915.
doi: 10.1177/0022034509345822
pmid: 19783798
|
[2] |
Satir P, Christensen ST. Overview of structure and function of mammalian Cilia[J]. Annu Rev Physiol, 2007, 69: 377-400.
pmid: 17009929
|
[3] |
Spasic M, Jacobs CR. Lengthening primary cilia enhances cellular mechanosensitivity[J]. Eur Cell Mater, 2017, 33: 158-168.
doi: 10.22203/eCM.v033a12
pmid: 28217833
|
[4] |
Thompson CL, Plant JC, Wann AK, et al. Chondrocyte expansion is associated with loss of primary Cilia and disrupted hedgehog signalling[J]. Eur Cells Mater, 2017, 34: 128-141.
|
[5] |
Yuan X, Yang S. Primary Cilia and intraflagellar transport proteins in bone and cartilage[J]. J Dent Res, 2016, 95(12): 1341-1349.
doi: 10.1177/0022034516652383
pmid: 27250654
|
[6] |
Oud MM, Latour BL, Bakey Z, et al. Cellular ciliary phenotyping indicates pathogenicity of novel variants in IFT140 and confirms a Mainzer-Saldino syndrome diagnosis[J]. Cilia, 2018, 7: 1.
doi: 10.1186/s13630-018-0055-2
|
[7] |
Huber C, Cormier-Daire V. Ciliary disorder of the skeleton[J]. Am J Med Genet C Semin Med Genet, 2012, 160C(3): 165-174.
doi: 10.1002/ajmg.c.v160c.3
URL
|
[8] |
Miller KA, Ah-Cann CJ, Welfare MF, et al. Cauli: A mouse strain with an IFT140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome[J]. PLoS Genet, 2013, 9(8): e1003746.
doi: 10.1371/journal.pgen.1003746
URL
|
[9] |
Peña-Padilla C, Marshall CR, Walker S, et al. Compound heterozygous mutations in the IFT140 gene cause Opitz trigonocephaly C syndrome in a patient with typical features of a ciliopathy[J]. Clin Genet, 2017, 91(4): 640-646.
doi: 10.1111/cge.12924
pmid: 27874174
|
[10] |
Bifari IN, Elkhamary SM, Bolz HJ, et al. The ophthalmic phenotype of IFT140-related ciliopathy ranges from isolated to syndromic congenital retinal dystrophy[J]. Br J Ophthalmol, 2016, 100(6): 829-833.
doi: 10.1136/bjophthalmol-2015-307555
pmid: 26359340
|
[11] |
Schmidts M, Frank V, Eisenberger T, et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease[J]. Hum Mutat, 2013, 34(5): 714-724.
doi: 10.1002/humu.22294
pmid: 23418020
|
[12] |
Shi Y, He GX, Lee WC, et al. Gli1 identifies osteogenic progenitors for bone formation and fracture repair[J]. Nat Commun, 2017, 8(1): 2043.
doi: 10.1038/s41467-017-02171-2
pmid: 29230039
|
[13] |
Feil S, Valtcheva N, Feil R. Inducible Cre mice[J]. Methods Mol Biol Clifton N J, 2009, 530: 343-363.
|
[14] |
Zhang J, Zhao J, Jiang WJ, et al. Conditional gene manipulation: Cre-ating a new biological era[J]. J Zhejiang Univ Sci B, 2012, 13(7): 511-524.
doi: 10.1631/jzus.B1200042
URL
|
[15] |
Kretzschmar K, Watt FM. Lineage tracing[J]. Cell, 2012, 148(1-2): 33-45.
doi: 10.1016/j.cell.2012.01.002
pmid: 22265400
|
[16] |
Hsu YC. Theory and practice of lineage tracing[J]. Stem Cells, 2015, 33(11): 3197-3204.
doi: 10.1002/stem.2123
URL
|
[17] |
Tata PR, Mou H, Pardo-Saganta A, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo[J]. Nature, 2013, 503(7475): 218-223.
doi: 10.1038/nature12777
|
[18] |
Cuervo H, Pereira B, Nadeem T, et al. PDGFRβ-P2A-CreERT2 mice: A genetic tool to target pericytes in angiogenesis[J]. Angiogenesis, 2017, 20(4): 655-662.
doi: 10.1007/s10456-017-9570-9
pmid: 28752390
|
[19] |
Mizoguchi T, Pinho S, Ahmed J, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development[J]. Dev Cell, 2014, 29(3): 340-349.
doi: 10.1016/j.devcel.2014.03.013
pmid: 24823377
|
[20] |
Perrault I, Saunier S, Hanein S, et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations[J]. Am J Hum Genet, 2012, 90(5): 864-870.
doi: 10.1016/j.ajhg.2012.03.006
pmid: 22503633
|
[21] |
Zhang CY, Zhang S, Sun Y. Expression of IFT140 during bone development[J]. J Histochem Cytochem, 2019, 67(10): 723-734.
doi: 10.1369/0022155419859357
pmid: 31238004
|