[1] |
Badel T, Zadravec D, Kes VB, et al. Orofacial pain- diagnostic and therapeutic challenges[J]. Acta Clin Croat, 2019, 58(Suppl 1): 82-89.
|
[2] |
Sperry MM, Kartha S, Winkelstein BA, et al. Experimental methods to inform diagnostic approaches for painful TMJ osteoarthritis[J]. J Dent Res, 2019, 98(4): 388-397.
doi: 10.1177/0022034519828731
pmid: 30819041
|
[3] |
Hosgor H. The relationship between temporomandibular joint effusion and pain in patients with internal derangement[J]. J Craniomaxillofac Surg, 2019, 47(6): 940-944.
doi: S1010-5182(18)31002-3
pmid: 30935852
|
[4] |
Kellesarian SV, Al-Kheraif AA, Vohra F, et al. Cytokine profile in the synovial fluid of patients with temporomandibular joint disorders: A systematic review[J]. Cytokine, 2016, 77: 98-106.
doi: 10.1016/j.cyto.2015.11.005
pmid: 26556103
|
[5] |
Liu WJ, Sun YP, He YQ, et al. IL-1β impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint[J]. Int J Mol Med, 2017, 39(2): 317-326.
doi: 10.3892/ijmm.2016.2832
pmid: 28000839
|
[6] |
Wang XD, Cui SJ, Liu Y, et al. Deterioration of mechanical properties of discs in chronically inflamed TMJ[J]. J Dent Res, 2014, 93(11): 1170-1176.
doi: 10.1177/0022034514552825
pmid: 25266714
|
[7] |
Zhang SP, Teo KYW, Chuah SJ, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019, 200: 35-47.
doi: S0142-9612(19)30085-7
pmid: 30771585
|
[8] |
Scanzello CR. Chemokines and inflammation in osteoarthritis: Insights from patients and animal models[J]. J Orthop Res, 2017, 35(4): 735-739.
doi: 10.1002/jor.23471
pmid: 27808445
|
[9] |
Ibi M. Inflammation and temporomandibular joint derangement[J]. Biol Pharm Bull, 2019, 42(4): 538-542.
doi: 10.1248/bpb.b18-00442
pmid: 30930413
|
[10] |
Ibi M, Horie S, Kyakumoto S, et al. Cell-cell interactions between monocytes/macrophages and synoviocyte-like cells promote inflammatory cell infiltration mediated by augmentation of MCP-1 production in temporomandibular joint[J]. Biosci Rep, 2018, 38(2):BSR20171217.
doi: 10.1042/BSR20171217
URL
|
[11] |
Guo HT, Callaway JB, Ting JP. Inflammasomes: Mechanism of action, role in disease, and therapeutics[J]. Nat Med, 2015, 21(7): 677-687.
doi: 10.1038/nm.3893
pmid: 26121197
|
[12] |
Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation[J]. J Cell Biol, 2016, 213(6): 617-629.
doi: 10.1083/jcb.201602089
pmid: 27325789
|
[13] |
McAllister MJ, Chemaly M, Eakin AJ, et al. NLRP3 as a potentially novel biomarker for the management of osteoarthritis[J]. Osteoarthritis Cartilage, 2018, 26(5): 612-619.
doi: 10.1016/j.joca.2018.02.901
URL
|
[14] |
Utreja A, Dyment NA, Yadav S, et al. Cell and matrix response of temporomandibular cartilage to mechanical loading[J]. Osteoarthritis Cartilage, 2016, 24(2): 335-344.
doi: 10.1016/j.joca.2015.08.010
URL
|
[15] |
Hassan MG, Kaler H, Zhang B, et al. Effects of multi-generational soft diet consumption on mouse craniofacial morphology[J]. Front Physiol, 2020, 11: 783.
doi: 10.3389/fphys.2020.00783
pmid: 32754047
|
[16] |
Betti BF, Everts V, Ket JCF, et al. Effect of mechanical loading on the metabolic activity of cells in the temporomandibular joint: A systematic review[J]. Clin Oral Investig, 2018, 22(1): 57-67.
doi: 10.1007/s00784-017-2189-9
URL
|
[17] |
Nogami S, Yamauchi K, Shimizu Y, et al. Experimental comparison between tractional and compressive stress on temporomandibular joint[J]. Oral Dis, 2017, 23(5): 644-652.
doi: 10.1111/odi.12650
pmid: 28142227
|
[18] |
Huang ZW, Zhou M, Wang Q, et al. Mechanical and hypoxia stress can cause chondrocytes apoptosis through over-activation of endoplasmic reticulum stress[J]. Arch Oral Biol, 2017, 84: 125-132.
doi: S0003-9969(17)30303-5
pmid: 28987725
|
[19] |
Kuang B, Zeng Z, Qin Q. Biomechanically stimulated chondrocytes promote osteoclastic bone resorption in the mandibular condyle[J]. Arch Oral Biol, 2019, 98: 248-257.
doi: S0003-9969(18)30726-X
pmid: 30530236
|
[20] |
Zhou YC, Wang TY, Hamilton JL, et al. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis[J]. Curr Rheumatol Rep, 2017, 19(9): 53.
doi: 10.1007/s11926-017-0679-z
pmid: 28752488
|
[21] |
Hui TQ, Zhou YC, Wang TY, et al. Activation of β-catenin signaling in aggrecan-expressing cells in temporomandibular joint causes osteoarthritis-like defects[J]. Int J Oral Sci, 2018, 10(2): 1-8.
doi: 10.1038/s41368-017-0006-6
|
[22] |
Jiang YY, Wen J, Gong C, et al. BIO alleviated compressive mechanical force-mediated mandibular cartilage pathological changes through Wnt/β-catenin signaling activation[J]. J Orthop Res, 2018, 36(4): 1228-1237.
doi: 10.1002/jorr.v36.4
URL
|
[23] |
王超然, 李志勤, 史培良, 等. 锥形束CT测量分析安氏Ⅲ类错牙合畸形治疗前后颞下颌关节骨性结构的改变[J]. 中国组织工程研究, 2019, 23(31): 4950-4955.
|
[24] |
Kartha S, Zhou T, Granquist EJ, et al. Development of a rat model of mechanically induced tunable pain and associated temporomandibular joint responses[J]. J Oral Maxillofac Surg, 2016, 74(1): 54.e1-54.e10.
doi: 10.1016/j.joms.2015.09.005
URL
|
[25] |
Ukita M, Matsushita K, Tamura M, et al. Histone H3K9 methylation is involved in temporomandibular joint osteoarthritis[J]. Int J Mol Med, 2020, 45(2): 607-614.
|
[26] |
Wang XD, Kou XX, He DQ, et al. Progression of cartilage degradation, bone resorption and pain in rat temporomandibular joint osteoarthritis induced by injection of iodoacetate[J]. PLoS One, 2012, 7(9): e45036.
doi: 10.1371/journal.pone.0045036
URL
|
[27] |
Mino-Oka A, Izawa T, Shinohara T, et al. Roles of hypoxia inducible factor-1α in the temporomandibular joint[J]. Arch Oral Biol, 2017, 73: 274-281.
doi: S0003-9969(16)30317-X
pmid: 27816790
|
[28] |
Yang HX, Wen Y, Zhang M, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint[J]. Autophagy, 2020, 16(2): 271-288.
doi: 10.1080/15548627.2019.1606647
pmid: 31007149
|
[29] |
易新, 周青, 李波. 软骨下骨在骨关节炎中的病理改变及其机制[J]. 中国医科大学学报, 2018, 47(3): 275-277,281.
|
[30] |
Finnilä MAJ, Thevenot J, Aho OM, et al. Association between subchondral bone structure and osteoarthritis histopathological grade[J]. J Orthop Res, 2017, 35(4): 785-792.
doi: 10.1002/jor.23312
pmid: 27227565
|
[31] |
Ye T, He F, Lu L, et al. The effect of oestrogen on mandibular condylar cartilage via hypoxia-inducible factor-2α during osteoarthritis development[J]. Bone, 2020, 130: 115123.
doi: 10.1016/j.bone.2019.115123
URL
|
[32] |
Zheng LW, Pi CX, Zhang J, et al. Aberrant activation of latent transforming growth factor-β initiates the onset of temporomandibular joint osteoarthritis[J]. Bone Res, 2018, 6: 26.
doi: 10.1038/s41413-018-0027-6
pmid: 30210898
|
[33] |
Ye T, Sun DL, Mu T, et al. Differential effects of high-physiological oestrogen on the degeneration of mandibular condylar cartilage and subchondral bone[J]. Bone, 2018, 111: 9-22.
doi: S8756-3282(18)30115-7
pmid: 29530720
|