[1] Zhang W, Xu LY, Zhu L, et al. Lipid droplets, the central hub integrating cell metabolism and the immune system[J]. Front Physiol, 2021, 12: 746749.
[2] Boucher DM, Vijithakumar V, Ouimet M. Lipid droplets as regulators of metabolism and immunity[J]. Immunometabolism, 2021, 3(3): e210021.
[3] Pereira-Dutra FS, Bozza PT. Lipid droplets diversity and functions in inflammation and immune response[J]. Expert Rev Proteomics, 2021, 18(9): 809-825.
[4] Hammoudeh N, Soukkarieh C, Murphy DJ, et al. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles[J]. Prog Lipid Res, 2023, 91: 101233.
[5] Zadoorian A, Du XM, Yang HY. Lipid droplet biogenesis and functions in health and disease[J]. Nat Rev Endocrinol, 2023, 19(8): 443-459.
[6] Nettebrock NT, Bohnert M. Born this way–Biogenesis of lipid droplets from specialized ER subdomains[J]. Biochim Biophys Acta BBA Mol Cell Biol Lipds, 2020, 1865(1): 158448.
[7] Jeon YG, Kim YY, Lee G, et al. Physiological and pathological roles of lipogenesis[J]. Nat Metab, 2023, 5(5): 735-759.
[8] Pan YL, Xin WQ, Wei W, et al. Knockdown of NEAT1 prevents post-stroke lipid droplet agglomeration in microglia by regulating autophagy[J]. Cell Mol Life Sci, 2024, 81(1): 30.
[9] Welte MA, Gould AP. Lipid droplet functions beyond energy storage[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(10 Pt B): 1260-1272.
[10] Povero D, Chen YB, Johnson SM, et al. HILPDA promotes NASH-driven HCC development by restraining intracellular fatty acid flux in hypoxia[J]. J Hepatol, 2023, 79(2): 378-393.
[11] Tan YJ, Jin Y, Zhou J, et al. Lipid droplets in pathogen infection and host immunity[J]. Acta Pharmacol Sin, 2024, 45(3): 449-464.
[12] Pratelli G, Di Liberto D, Carlisi D, et al. Hypertrophy and ER stress induced by palmitate are counteracted by mango peel and seed extracts in 3T3-L1 adipocytes[J]. Int J Mol Sci, 2023, 24(6): 5419.
[13] Zambusi A, Novoselc KT, Hutten S, et al. TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury[J]. Nat Neurosci, 2022, 25(12):
1608-1625.
[14] 谭彦杰. 脂滴调控微丝骨架重塑及线粒体活性进而抑制细胞氧化应激的分子机制研究 [D]. 武汉: 华中农业大学, 2020.
[15] Castoldi A, Monteiro LB, van Teijlingen Bakker N, et al. Triacylglycerol synthesis enhances macrophage inflammatory function[J]. Nat Commun, 2020, 11(1): 4107.
[16] Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators[J]. Biochimie, 2020, 169: 69-87.
[17] Shi Z, Wang X, Luo JL, et al. RNA sequencing-based optimization of biological lipid droplets
for sonodynamic therapy to reverse tumor hypoxia and elicit robust immune response[J]. Nano Res,
2023, 16(5): 7187-7198.
[18] Batista-Gonzalez A, Vidal R, Criollo A, et al. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages[J]. Front Immunol, 2020, 10: 2993.
[19] Shen ZS, Kuang SH, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism[J].Bioact Mater, 2020, 5(4): 1113-1126.
[20] Wijesundara NM, Lee SF, Davidson R, et al. Carvacrol suppresses inflammatory biomarkers production by lipoteichoic acid- and peptidoglycan-stimulated human tonsil epithelial cells[J]. Nutrients, 2022, 14(3): 503.
[21] Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders[J]. Trends Endocrinol Metab, 2022, 33(3): 218-229.
[22] Wan ZX, Fu SD, Wang ZL, et al. FABP4-mediated lipid droplet formation in Streptococcus uberis-infected macrophages supports host defence[J]. Vet Res, 2022, 53(1): 90.
[23] Bosch M, Sánchez-Álvarez M, Fajardo A, et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense[J]. Science, 2020, 370(6514): eaay8085.
[24] Doolin T, Amir HM, Duong L, et al. Mammalian histones facilitate antimicrobial synergy by disrupting the bacterial proton gradient and chromosome organization[J]. Nat Commun, 2020, 11(1): 3888.
|