[1] |
Wilcko MT, Wilcko WM, Pulver JJ, et al. Accelerated osteogenic orthodontics technique: A 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation[J]. J Oral Maxillofac Surg, 2009, 67(10): 2149-2159.
doi: 10.1016/j.joms.2009.04.095
URL
|
[2] |
Frost HM. The biology of fracture healing[J]. Clin Orthop Relat Res, 1989, 248: 283-293.
|
[3] |
Kole H. Surgical operations on the alveolar ridge to correct occlusal abnormalities[J]. Oral Surg Oral Med Oral Pathol, 1959, 12(3): 277-288contd.
doi: 10.1016/0030-4220(59)90177-X
URL
|
[4] |
邵淇, 康非吾. 手术方法加速正畸牙移动的研究进展[J]. 口腔生物医学, 2021, 12(3): 201-204.
|
[5] |
Kaipatur N, Major P, Stevenson T, et al. Impact of selective alveolar decortication on bisphosphonate burdened alveolar bone during orthodontic tooth movement[J]. Arch Oral Biol, 2015, 60(11): 1681-1689.
doi: 10.1016/j.archoralbio.2015.08.008
pmid: 26355528
|
[6] |
黄丹青, 康非吾, 周小康, 等. 下颌截骨术对兔颌骨非术区骨改建的影响[J]. 口腔颌面外科杂志, 2016, 26(2): 83-87.
doi: 10.3969/j.issn.1005-4979.2016.02.002
URL
|
[7] |
蔡昀, 唐燚, 康非吾. 下颌升支截骨去血供后牙槽骨内氧水平变化与骨改建的变化研究[J]. 口腔医学, 2020, 40(10): 869-873.
|
[8] |
Loi F, Córdova LA, Pajarinen J, et al. Inflammation, fracture and bone repair[J]. Bone, 2016, 86: 119-130.
doi: 10.1016/j.bone.2016.02.020
pmid: 26946132
|
[9] |
Lorenzo J. Interactions between immune and bone cells: New insights with many remaining questions[J]. J Clin Invest, 2000, 106(6): 749-752.
pmid: 10995785
|
[10] |
Wu Q, Zhou XK, Huang DQ, et al. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro[J]. Cell Physiol Biochem, 2017, 41(4): 1360-1369.
doi: 10.1159/000465455
pmid: 28278513
|
[11] |
Huang HC, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: Molecular mechanisms[J]. Am J Orthod Dentofac Orthop, 2014, 146(5): 620-632.
doi: 10.1016/j.ajodo.2014.07.007
URL
|
[12] |
De Albuquerque Taddei SR, Andrade I, Queiroz-Junior CM, et al. Role of CCR2 in orthodontic tooth movement[J]. Am J Orthod Dentofac Orthop, 2012, 141(2): 153-160.e1.
doi: 10.1016/j.ajodo.2011.07.019
URL
|
[13] |
Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression[J]. Nat Med, 2011, 17: 1231-1234.
doi: 10.1038/nm.2452
pmid: 21909105
|
[14] |
Mountziaris PM, Spicer PP, Kasper FK, et al. Harnessing and modulating inflammation in strategies for bone regeneration[J]. Tissue Eng Part B Rev, 2011, 17(6): 393-402.
doi: 10.1089/ten.teb.2011.0182
URL
|
[15] |
He YY, Munday JS, Perrott M, et al. Association of age with the expression of hypoxia-inducible factors HIF-1α, HIF-2α, HIF-3α and VEGF in lung and heart of Tibetan sheep[J]. Animals, 2019, 9(9): 673.
doi: 10.3390/ani9090673
URL
|
[16] |
Gladek I, Ferdin J, Horvat S, et al. HIF-1α gene polymorphisms and human diseases: 1005-4979-33-6-402al review of 97 association studies[J]. Genes Chromosomes Cancer, 2017, 56(6): 439-452.
doi: 10.1002/gcc.v56.6
URL
|
[17] |
Zhu JE, Tang Y, Wu Q, et al. HIF-1α facilitates osteocyte-mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro[J]. J Cell Physiol, 2019, 234(11): 21182-21192.
doi: 10.1002/jcp.28721
pmid: 31032948
|
[18] |
Tang Y, Zhu JE, Huang DQ, et al. Mandibular osteotomy-induced hypoxia enhances osteoclast activation and acid secretion by increasing glycolysis[J]. J Cell Physiol, 2019, 234(7): 11165-11175.
doi: 10.1002/jcp.27765
pmid: 30548595
|
[19] |
Tang Y, Li XZ, Cai Y, et al. Hypoxia-induced factor 1α promotes osteotomy-induced regional acceleratory phenomenon via DC-STAMP mediated membrane fusion[J]. Oral Dis, 2023, 29(5): 2139-2153.
doi: 10.1111/odi.v29.5
URL
|
[20] |
唐燚, 康非吾. 低氧诱导因子-1α在生物性骨改建和骨病中的作用[J]. 口腔颌面外科杂志, 2021, 31(1): 56-59.
doi: 10.3969/j.issn.1005-4979.2021.1.013
|
[21] |
Kang H, Yang K, Xiao LB, et al. Osteoblast hypoxia-inducible factor-1α pathway activation restrains osteoclastogenesis via the interleukin-33-MicroRNA-34a-Notch1 pathway[J]. Front Immunol, 2017, 8: 1312.
doi: 10.3389/fimmu.2017.01312
pmid: 29085370
|
[22] |
Wu C, Rankin EB, Castellini L, et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin[J]. Genes Dev, 2015, 29(8): 817-831.
doi: 10.1101/gad.255000.114
URL
|
[23] |
Yu HB, Yu WY, Liu Y, et al. Expression of HIF-1α in cycling stretch‑induced osteogenic differentiation of bone mesenchymal stem cells[J]. Mol Med Report, 2019, 20(5): 4489-4498.
|
[24] |
Tian YY, Shao Q, Tang Y, et al. HIF-1α regulates osteoclast activation and mediates osteogenesis during mandibular bone repair via CT-1[J]. Oral Dis, 2022, 28(2): 428-441.
doi: 10.1111/odi.v28.2
URL
|
[25] |
赵玉洁, 管晓燕, 李小兰, 等. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483.
|
[26] |
Wang Y, Zhang HW, Sun W, et al. Macrophages mediate corticotomy-accelerated orthodontic tooth movement[J]. Sci Rep, 2018, 8(1): 16788.
doi: 10.1038/s41598-018-34907-5
pmid: 30429494
|