[1] |
Cortes J, Rugo HS, Cescon DW, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer[J]. N Engl J Med, 2022, 387(3): 217-226.
|
[2] |
Pitt JM, Marabelle A, Eggermont A, et al. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy[J]. Ann Oncol, 2016, 27(8): 1482-1492.
doi: 10.1093/annonc/mdw168
pmid: 27069014
|
[3] |
Chen PY, Wei WF, Wu HZ, et al. Cancer-associated fibroblast heterogeneity: A factor that cannot be ignored in immune microenvironment remodeling[J]. Front Immunol, 2021, 12: 671595.
|
[4] |
Cremasco V, Astarita JL, Grauel AL, et al. FAP delineates heterogeneous and functionally divergent stromal cells in immune-excluded breast tumors[J]. Cancer Immunol Res, 2018, 6(12): 1472-1485.
doi: 10.1158/2326-6066.CIR-18-0098
pmid: 30266714
|
[5] |
Brechbuhl HM, Finlay-Schultz J, Yamamoto TM, et al. Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen[J]. Clin Cancer Res, 2017, 23(7): 1710-1721.
doi: 10.1158/1078-0432.CCR-15-2851
pmid: 27702820
|
[6] |
Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2016, 375(19): 1856-1867.
|
[7] |
Chen JT, Yang JF, Li H, et al. Single-cell transcriptomics reveal the intratumoral landscape of infiltrated T-cell subpopulations in oral squamous cell carcinoma[J]. Mol Oncol, 2021, 15(4): 866-886.
doi: 10.1002/1878-0261.12910
pmid: 33513276
|
[8] |
Zhang Q, Wang YX, Xia CW, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals distinct cancer-associated fibroblasts in head and neck squamous cell carcinoma[J]. Ann Transl Med, 2021, 9(12): 1017.
doi: 10.21037/atm-21-2767
pmid: 34277817
|
[9] |
Zhu C, Gu LQ, Yao MF, et al. Prognostic value of an immune-related gene signature in oral squamous cell carcinoma[J]. Front Oncol, 2021, 11: 776979.
|
[10] |
Hutton C, Heider F, Blanco-Gomez A, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity[J]. Cancer Cell, 2021, 39(9): 1227-1244. e20.
doi: 10.1016/j.ccell.2021.06.017
pmid: 34297917
|
[11] |
Huang HC, Wang ZN, Zhang YQ, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer[J]. Cancer Cell, 2022, 40(6): 656-673. e7.
|
[12] |
Kerdidani D, Aerakis E, Verrou KM, et al. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts[J]. J Exp Med, 2022, 219(2): e20210815.
|
[13] |
Fukuda Y, Bustos MA, Cho SN, et al. Interplay between soluble CD74 and macrophage-migration inhibitory factor drives tumor growth and influences patient survival in melanoma[J]. Cell Death Dis, 2022, 13(2): 117.
doi: 10.1038/s41419-022-04552-y
pmid: 35121729
|
[14] |
Xu SC, Li XZ, Tang L, et al. CD74 correlated with malignancies and immune microenvironment in gliomas[J]. Front Mol Biosci, 2021, 8: 706949.
|
[15] |
张雅文, 梁金容, 胡海燕, 等. 骨肉瘤组织CD74的表达及其与患者预后的关系[J]. 郑州大学学报(医学版), 2022, 57(6): 797-802.
|
[16] |
Batra H, Ding QQ, Pandurengan R, et al. Exploration of cancer associated fibroblasts phenotypes in the tumor microenvironment of classical and pleomorphic invasive lobular carcinoma[J]. Front Oncol, 2023, 13: 1281650.
|
[17] |
Fotsitzoudis C, Koulouridi A, Messaritakis I, et al. Cancer-associated fibroblasts: The origin, biological characteristics and role in cancer-a glance on colorectal cancer[J]. Cancers, 2022, 14(18): 4394.
|
[18] |
Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598.
doi: 10.1038/nrc.2016.73
pmid: 27550820
|
[19] |
Wang H, Liu FM, Wu XL, et al. Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming[J]. Exp Cell Res, 2024, 435(2): 113947.
|
[20] |
Su SC, Chen JN, Yao HR, et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness[J]. Cell, 2018, 172(4): 841-856. e16.
doi: 10.1016/j.cell.2018.01.009
|
[21] |
Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer[J]. Cancer Discov, 2020, 10(9): 1330-1351.
doi: 10.1158/2159-8290.CD-19-1384
pmid: 32434947
|
[22] |
Fang Y, Chen M, Li GF, et al. Cancer-associated fibroblast-like fibroblasts in vocal fold leukoplakia suppress CD8+ T cell functions by inducing IL-6 autocrine loop and interacting with Th17 cells[J]. Cancer Lett, 2022, 546: 215839.
|
[23] |
Hu GM, Cheng P, Pan J, et al. An IL6-adenosine positive feedback loop between CD73+ γδTregs and CAFs promotes tumor progression in human breast cancer[J]. Cancer Immunol Res, 2020, 8(10): 1273-1286.
|
[24] |
Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells[J]. J Immunol, 2005, 174(9): 5215-5223.
doi: 10.4049/jimmunol.174.9.5215
pmid: 15843517
|
[25] |
Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function[J]. Nature, 2007, 450(7169): 566-569.
|
[26] |
Mirlekar B, Michaud D, Searcy R, et al. IL35 hinders endogenous antitumor T-cell immunity and responsiveness to immunotherapy in pancreatic cancer[J]. Cancer Immunol Res, 2018, 6(9): 1014-1024.
doi: 10.1158/2326-6066.CIR-17-0710
pmid: 29980536
|
[27] |
Sullivan JA, Tomita Y, Jankowska-Gan E, et al. Treg-cell-derived IL-35-coated extracellular vesicles promote infectious tolerance[J]. Cell Rep, 2020, 30(4): 1039-1051. e5.
doi: S2211-1247(19)31746-2
pmid: 31995748
|