[1] |
Chen YW, Wang HC, Gao LH, et al. Osteoclastogenesis in local alveolar bone in early decortication-facilitated orthodontic tooth movement[J]. PLoS One, 2016, 11(4): e0153937.
|
[2] |
王超勋, 田凯月, 马晓辉, 等. 手术优先与正畸优先的正畸正颌联合治疗方法的比较研究[J]. 北京口腔医学, 2023, 31(4): 251-254.
|
[3] |
Schneider KM, Altay MA, Demko C, et al. Predictors of blood loss during orthognathic surgery: Outcomes from a teaching institution[J]. Oral Maxillofac Surg, 2015, 19(4): 361-367.
|
[4] |
Manishaa V, Pendem S, Muthusekhar MR, et al. Evaluation of postoperative outcome and incidence of complications in multisegment le fort I osteotomies: A case series[J]. Cureus, 2023, 15(5): e39772.
|
[5] |
Nilsson J, Hindocha N, Thor A. Time matters–Differences between computer-assisted surgery and conventional planning in cranio-maxillofacial surgery: A systematic review and meta-analysis[J]. J Cranio Maxillofac Surg, 2020, 48(2): 132-140.
|
[6] |
蔡昀, 唐燚, 康非吾. 下颌升支截骨去血供后牙槽骨内氧水平变化与骨改建的变化研究[J]. 口腔医学, 2020, 40(10): 869-873.
|
[7] |
Tang Y, Zhu J, Huang DQ, et al. Mandibular osteotomy-induced hypoxia enhances osteoclast activation and acid secretion by increasing glycolysis[J]. J Cell Physiol, 2019, 234(7): 11165-11175.
|
[8] |
Chen W, Wu PF, Yu F, et al. HIF-1α regulates bone homeostasis and angiogenesis, participating in the occurrence of bone metabolic diseases[J]. Cells, 2022, 11(22): 3552.
|
[9] |
Park-Min KH. Metabolic reprogramming in osteoclasts[J]. Semin Immunopathol, 2019, 41(5): 565-572.
|
[10] |
Li BE, Lee WC, Song C, et al. Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation[J]. FASEB J, 2020, 34(8): 11058-11067.
|
[11] |
Karner CM, Long FX. Glucose metabolism in bone[J]. Bone, 2018, 115: 2-7.
|
[12] |
Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity[J]. Science, 2014, 345(6204): 1250684.
|
[13] |
Codo AC, Davanzo GG, de Brito Monteiro L, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis[J]. Cell Metab, 2020, 32(3): 498-499.
|
[14] |
Pan TT, Sun SQ, Chen Y, et al. Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis[J]. Crit Care, 2022, 26(1): 29.
|
[15] |
石玉. 能量代谢在成骨和破骨细胞中的研究[J]. 华西口腔医学杂志,2021, 39(5): 501-509.
|
[16] |
Lee WC, Guntur AR, Long FX, et al. Energy metabolism of the osteoblast: Implications for osteoporosis[J]. Endocr Rev, 2017, 38(3): 255-266.
|
[17] |
Kim JM, Lin CJ, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9): 2073.
|