[1] Deng J, Zou ZM, Zhou TL, et al. Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue[J]. Neurol Sci, 2011, 32(4): 641-651.
[2] Luo J, Zhang HT, Jiang XD, et al. Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection[J]. Acta Neurochir (Wien), 2009, 151(11): 1483-1492.
[3] Shin JW LJ, Lee JE, Min WK, et al. Combined effects of hematopoietic progenitor cell mobilization from bone marrow by granulocyte colony stimulating factor and AMD3100 and chemotaxis into the brain using stromal cell-derived factor-1a in an Alzheimer's disease mouse model[J]. Stem Cells, 2011, 29(7): 1075-1089.
[4] Tarella C, Rutella S, Gualandi F, et al. Consistent bone marrow-derived cell mobilization following repeated short courses of granulocyte-colony-stimulating factor in patients with amyotrophic lateral sclerosis: results from a multicenter prospective trial[J]. Cytotherapy, 2010, 12(1): 50-59.
[5] Zaruba MM, Zhu W, Soonpaa MH, et al. Granulocyte colony-stimulating factor treatment plus dipeptidylpeptidase-IV inhibition augments myocardial regeneration in mice expressing cyclin D2 in adult cardiomyocytes[J]. Eur Heart J, 2012, 33(1): 129-137.
[6] Boy S, Sauerbruch S, Kraemer M, et al. Mobilisation of hematopoietic CD34+ precursor cells in patients with acute stroke is safe--results of an open-labeled non randomized phase I/II trial[J]. PLoS One, 2011, 6(8): e23099.
[7] Mark AL, Sun Z, Warren DS, et al. Stem cell mobilization is life saving in an animal model of acute liver failure[J]. Ann Surg, 2010, 252(4): 591-596.
[8] Zhao J, Tian T, Zhang Q, et al. Use of granulocyte colony-stimulating factor for the treatment of thin endometrium in experimental rats[J]. PLoS One, 2013, 8(12): e82375.
[9] Nishimura Y, Ii M, Qin G, et al. CXCR4 antagonist AMD3100 accelerates impaired wound healing in diabetic mice[J]. J Invest Dermatol, 2012, 132(3): 711-720.
[10] Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist[J]. J Exp Med, 2005, 201(8): 1307-1318.
[11] Dar A, Schajnovitz A, Lapid K, et al. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells[J]. Leukemia, 2011, 25(8): 1286-1296.
[12] Bonig H, Chudziak D, Priestley G, et al. Insights into the biology of mobilized hematopoietic stem/progenitor cells through innovative treatment schedules of the CXCR4 antagonist AMD3100[J]. Exp Hematol, 2009, 37(3): 402-415.
[13] Wise JK, Sumner DR, Virdi AS. Modulation of Stromal Cell-Derived Factor-1/CXC Chemokine Receptor 4 Axis Enhances rhBMP-2-Induced Ectopic Bone Formation[J]. Tissue Eng Part A, 2012, 18(7-8): 860-869.
[14] 王晓霞, Warren S. 血管内皮干细胞动员剂对糖尿病小鼠颅骨缺损愈合的影响[J]. 中华整形外科杂志, 2011, 27(6): 442-447.
[15] Wang XX, Allen RJ, Tutela JP, et al. Progenitor cell mobilization enhances bone healing by means of improved neovascularization and osteogenesis[J]. Plast Reconstr Surg, 2011, 128(2): 395-405.
[16] Kumar S, Ponnazhagan S. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect[J]. Bone, 2012, 50(4): 1012-1018.
[17] Toupadakis CA, Granick JL, Sagy M, et al. Mobilization of endogenous stem cell populations enhances fracture healing in a murine femoral fracture model[J]. Cytotherapy, 2013, 15(9): 1136-1147.
[18] McNulty MA, Virdi AS, Christopherson KW, et al. Adult stem cell mobilization enhances intramembranous bone regeneration: a pilot study[J]. Clin Orthop Relat Res, 2012, 470(9): 2503-2512.
[19] Davidson EH, Sultan SM, Butala P, et al. Augmenting neovascularization accelerates distraction osteogenesis[J]. Plast Reconstr Surg, 2011, 128(2): 406-414.
[20] 廖新根, 殷明, 李士勇, 等. SDF-1/CXCR4轴在骨再生修复中的研究进展[J]. 生命科学, 2010, 22(10): 1069-1073.
[21] 常春康, 张曦, 赵佑山, 等. CXCR4受体阻断剂AMD3100研究进展[J]. 中国实验血液学杂志, 2011, 19(3): 831-834.
[22] Frank RR, Jagan S, Paganessi LA, et al. Effective Mobilization of mesenchymal stem cells in C57BL/6 mice utilizing single agent plerixafor (AMD3100) or in combination with neupogen (G-CSF)[J]. Biol Blood Marrow Transplant., 2012, 18(2): S266.
[23] 潘伟, 何玉甜. 骨髓干细胞动员治疗冠心病[J]. 骨髓干细胞动员治疗冠心病, 2009, 20(6): 254-258.
[24] Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3): 813-823.
[25] 董晖, 余勤, 刘丽珍, 等. G-CSF、AMD3100对大鼠间充质干细胞增殖、迁移和黏附能力影响的研究[J]. 国际生物医学工程杂志, 2012, 35(343-349): 7.
[26] Matsumoto T, Kawamoto A, Kuroda R, et al. Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing[J]. Am J Pathol, 2006, 169(4): 1440-1457.
[27] Matsumoto T, Kuroda R, Mifune Y, et al. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing[J]. Bone, 2008, 43(3): 434-439.
[28] Granero-Moltó F, Weis JA, Miga MI, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing[J]. Stem Cells, 2009, 27(8): 1887-1898.[29] Lee SW, Padmanabhan P, Ray P, et al. Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury[J]. J Orthop Res, 2009, 27(3): 295-302.
[30] Kumagai K, Vasanji A, Drazba JA, et al. Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model[J]. J Orthop Res, 2008, 26(2): 165-175.
[31] Morrison SJ, Scadden DT. Bone-marrow haematopoietic-stem-cell niches[J]. Nature, 2014, 505(7483): 327-334.
[32] Matsumoto T, Mifune Y, Kawamoto A, et al. Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing[J]. J Cell Physiol, 2008, 215(1): 234-242.
[33] Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies[J]. Expert Opin Biol Ther, 2008, 8(5): 569-581.
[34] Otsuru S, Tamai K, Yamazaki T, et al. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway[J]. Stem Cells, 2008, 26(1): 223-234.
[35] Aguirre A, Planell JA, Engel E. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis[J]. Biochem Biophys Res Commun, 2010, 400(2): 284-291.
[36] Bianco P. Bone and the hematopoietic niche: a tale of two stem cells[J]. Blood, 2011, 117(20): 5281-5288.
[37] Pontikoglou C, Deschaseaux F, Sensebe L, et al. Bone marrow mesenchymal stem cells: biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation[J]. Stem Cell Rev, 2011, 7(3): 569-589.
[38] Motabi IH, DiPersio JF. Advances in stem cell mobilization[J]. Blood Rev, 2012, 26(6): 267-278.
[39] Ball LM, Bernardo ME, Roelofs H, et al. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation[J]. Blood, 2007, 110(7): 2764-2767.
[40] Le Blanc K, Samuelsson H, Gustafsson B, et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells[J]. Leukemia, 2007, 21(8): 1733-1738.
[41] Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities[J]. Stem Cells, 2007, 25(7): 1737-1745.
[42] 李士勇, 邓宇斌. SDF-1CXCR4轴在缺氧缺血性脑损伤中的研究进展[J]. 生命科学, 2008, 20(3): 463-466.
[43] Haider H, Jiang S, Idris NM, et al. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair[J]. Circ Res, 2008, 103(11): 1300-1308.
[44] Nedeau AE, Bauer RJ, Gallagher K, et al. A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells[J]. Exp Cell Res, 2008, 314(11-12): 2176-2186.
[45] 周瑞明. SDF-1/CXCR4拮抗剂AMD3100应用方面的研究进展[J]. 广东医学院学报, 2010, 28(2): 205-207.
[46] Christopher MJ, Liu F, Hilton MJ, et al. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization[J]. Blood, 2009, 114(7): 1331-1339.
[47] Winkler IG, Pettit AR, Raggatt LJ, et al. Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation[J]. Leukemia, 2012, 26(7): 1594-1601.
[48] Tura O, Crawford J, Barclay GR, et al. Granulocyte colony-stimulating factor (G-CSF) depresses angiogenesis in vivo and in vitro: implications for sourcing cells for vascular regeneration therapy[J]. J Thromb Haemost, 2010, 8(7): 1614-1623.
[49] Caplan AI, Correa D. PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs[J]. J Orthop Res, 2011, 29(12): 1795-1803. |