[1] Anna T. Bone development: overview of bone cells and signaling[J]. Curr Osteoporos Rep, 2011, 9(4): 264-273.
[2] Derouen MC, Oro AE. The primary cilium: a small yet mighty organelle[J]. J Invest Dermatol, 2009, 129(2): 264-265.
[3] Eggenschwiler JT, Anderson KV. Cilia and developmental signaling[J]. Annu Rev Cell Dev Biol, 2007, 23: 345-373.
[4] Satir P, Christensen S T. Overview of structure and function of mammalian cilia[J]. Annu Rev Physiol, 2007, 69: 377-400.
[5] Pazour GJ, Wilkerson CG, Witman GB. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT)[J]. J Cell Biol, 1998, 141(4): 979-992.
[6] Christensen ST, Pedersen LB, Schneider L, et al. Sensory cilia and integration of signal transduction in human health and disease[J]. Traffic, 2007, 8(2): 97-109.
[7] Christensen ST, Pedersen SF, Satir P, et al. Chapter 10 the primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair[J]. Curr Top Dev Biol, 2008, 85: 261-301.
[8] Praetorius HA, Leipziger J. Released nucleotides amplify the cilium-dependent, flow-induced [Ca2+]i response in MDCK cells[J]. Acta Physiol (Oxf), 2009,197(3):241-251.
[9] Masyuk A I, Masyuk T V, Larusso N F. Cholangiocyte primary cilia in liver health and disease[J]. Dev Dyn, 2008, 237(8): 2007-2012.
[10] Kuhara A, Okumura M, Kimata T, et al. Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans[J]. Science, 2008, 320(5877): 803-807.
[11] Insinna C, Besharse JC. Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors[J]. Dev Dyn,2008,237(8):1982–1992.
[12] Christensen ST, Voss JW, Teilmann SC, et al. High expression of the taurine transporter TauT in primary cilia of NIH3T3 fibroblasts[J]. Cell Biol Int, 2005,29(5):347–351.
[13] Bangs FK, Schrode N, Hadjantonakis AK, et al. Lineage specificity of primary cilia in the mouse embryo[J]. Nat Cell Biol, 2015, 17(2):113–122.
[14] Vestergaard ML, Awan A, Warzecha CB, et al. Immunofluorescence microscopy and mRNA analysis of human embryonic stem cells (hESCs) including primary cilia associated signaling pathways[J]. Methods Mol Biol, 2016, 1307:123-140.
[15] Jang J, Wang Y, Lalli MA, et al. Primary cilium-autophagy-Nrf2 (PAN) axis activation commits human embryonic stem cells to a neuroectoderm Fate[J]. Cell, 2016, 165(2):410-420.
[16] Bodle JC, Rubenstein CD, Phillips ME, et al. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis[J]. PLoS One, 2013, 8(5):e62554.
[17] Marion V, Stoetzel C, Schlicht D, et al. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation[J]. Proc Natl Acad Sci U S A, 2009, 106(6):1820-1825.
[18] Dalbay MT, Thorpe SD, Connelly JT, et al. Adipogenic differentiation of hMSCs is mediated by recruitment of IGF-1r onto the primary cilium associated with cilia elongation[J]. Stem Cells, 2015, 33(6):1952-1961.
[19] Liu Z, Tu H, Kang Y, et al. Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish[J]. Nat Commun, 2019, 10(1):1839.
[20] Paridaen JT, Wilsch-Br?覿uninger M, Huttner WB. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division[J]. Cell, 2013, 155(2):333-344.
[21] Tong CK, Han YG, Shah JK, et al. Primary cilia are required in a unique subpopulation of neural progenitors[J]. Proc Natl Acad Sci U S A, 2014, 111(34): 12438-12443.
[22] Hampl M, Cela P, Szabo-Rogers HL, et al. Role of primary cilia in odontogenesis[J]. J Dent Res, 2017, 96(9): 965-974.
[23] Brugmann SA, Allen NC, James AW, et al. A primary cilia-dependent etiology for midline facial disorders[J]. Hum Mol Genet, 2010, 19(8): 1577-1592.
[24] Forsythe E, Beales PL. Bardet-Biedl syndrome[J]. European Journal of Human Genetics, 2013, 21(1): 8-13.
[25] Blacque O E, Leroux M R. Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport[J]. Cell Mol Life Sci, 2006, 63(18): 2145-2161.
[26] Andersson E M, Axelsson S, Gjolstad L F, et al. Taurodontism: a minor diagnostic criterion in Laurence-Moon/Bardet-Biedl syndromes[J]. Acta Odontol Scand, 2013, 71(6): 1671-1674.
[27] Borgstr?觟m M K, Riise R, Tornqvist K, et al. Anomalies in the permanent dentition and other oral findings in 29 individuals with Laurence‐Moon‐Bardet‐Biedl syndrome[J]. J Oral Pathol Med, 1996, 25(2): 86-89.
[28] Beales P, Elcioglu N, Woolf A, et al. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey[J]. J Med Genetics, 1999, 36(6): 437-446.
[29] Qin J, Lin Y, Norman R X, et al. Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components[J]. Proc Nati Acad Sci U S A, 2011, 108(4): 1456-1461.
[30] Baujat G, Le Merrer M. Ellis-van Creveld syndrome[J]. Orphanet J Rare Dis, 2007, 2:27.
[31] Balic A, Aguila HL, Caimano MJ, et al. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars[J]. Bone, 2010, 46(6): 1639-1651.
[32] Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells[J]. J Dent Res, 2002, 81(8): 531-535.
[33] Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5807-5812.
[34] Sharpe PT. Dental mesenchymal stem cells[J]. Development, 2016, 143(13): 2273-2280.
[35] Wang X, Sha XJ, Li GH, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells[J]. Arch Oral Biol. 2012,57(9):1231-1240.
[36] Zhang H, Takeda H, Tsuji T, et al. Loss of function of Evc2 in dental mesenchyme leads to hypomorphic enamel[J]. J Dent Res, 2017, 96(4): 421-429.
[37] Yuan X, Cao X, Yang S. IFT80 is required for stem cell proliferation, differentiation, and odontoblast polarization during tooth development[J]. Cell Death Dis, 2019, 10(2):63.
[38] Martínez C, Smith P C, Rodriguez J P, et al. Sonic hedgehog stimulates proliferation of human periodontal ligament stem cells[J]. J Dent Res, 2011, 90(4): 483-488.
|