[1] |
Smith CEL, Poulter JA, Antanaviciute A, et al. Amelogenesis imperfecta; genes, proteins, and pathways[J]. Front Physiol, 2017, 8: 435.
doi: 10.3389/fphys.2017.00435
pmid: 28694781
|
[2] |
段小红. 口腔罕见病名录(第一版)[J]. 中华口腔医学杂志, 2020, 55(07): 494-500.
|
[3] |
Witkop CJ. Clinical aspects of dental anomalies[J]. Int Dent J, 1976, 26(4): 378-390.
pmid: 186412
|
[4] |
Migeon BR. Choosing the active X: The human version of X inactivation[J]. Trends Genet, 2017, 33(12): 899-909.
doi: S0168-9525(17)30165-8
pmid: 28988701
|
[5] |
Nowwarote N, Theerapanon T, Osathanon T, et al. Amelogenesis imperfecta: A novel FAM83H mutation and characteristics of periodontal ligament cells[J]. Oral Dis, 2018, 24(8): 1522-1531.
doi: 10.1111/odi.12926
pmid: 29949226
|
[6] |
Zheng YC, Lu T, Chen JF, et al. The gain-of-function FAM83H mutation caused hypocalcification amelogenesis imperfecta in a Chinese family[J]. Clin Oral Investig, 2021, 25(5): 2915-2923.
doi: 10.1007/s00784-020-03609-6
|
[7] |
Wang SK, Zhang H, Hu CY, et al. FAM83H and autosomal dominant hypocalcified amelogenesis imperfecta[J]. J Dent Res, 2021, 100(3): 293-301.
doi: 10.1177/0022034520962731
pmid: 33034243
|
[8] |
Haubek D, Gjorup H, Jensen LG, et al. Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a Danish five-generation family with a novel FAM83H nonsense mutation[J]. Int J Paediatr Dent, 2011, 21(6): 407-412.
doi: 10.1111/j.1365-263X.2011.01142.x
pmid: 21702852
|
[9] |
Hyun HK, Lee SK, Lee KE, et al. Identification of a novel FAM83H mutation and microhardness of an affected molar in autosomal dominant hypocalcified amelogenesis imperfecta[J]. Int Endod J, 2009, 42(11): 1039-1043.
doi: 10.1111/j.1365-2591.2009.01617.x
pmid: 19825039
|
[10] |
Huang WS, Yang M, Wang CN, et al. Evolutionary analysis of FAM83H in vertebrates[J]. PLoS One, 2017, 12(7): e0180360.
doi: 10.1371/journal.pone.0180360
URL
|
[11] |
Kim JW, Lee SK, Lee ZH, et al. FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta[J]. Am J Hum Genet, 2008, 82(2): 489-494.
doi: 10.1016/j.ajhg.2007.09.020
URL
|
[12] |
Kweon YS, Lee KE, Ko J, et al. Effects of FAM83H overexpression on enamel and dentine formation[J]. Arch Oral Biol, 2013, 58(9): 1148-1154.
doi: 10.1016/j.archoralbio.2013.03.001
URL
|
[13] |
Wang SK, Hu YY, Yang J, et al. FAM83H null mice support a neomorphic mechanism for human ADHCAI[J]. Mol Genet Genomic Med, 2016, 4(1): 46-67.
doi: 10.1002/mgg3.2016.4.issue-1
URL
|
[14] |
Kuga T, Kume H, Adachi J, et al. Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON[J]. Sci Rep, 2016, 6: 34472.
doi: 10.1038/srep34472
pmid: 27681590
|
[15] |
Yang M, Huang WS, Yang F, et al. FAM83H mutation inhibits the mineralization in ameloblasts by activating Wnt/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2018, 501(1): 206-211.
doi: 10.1016/j.bbrc.2018.04.216
URL
|
[16] |
Kim KM, Park SH, Bae JS, et al. FAM83H is involved in the progression of hepatocellular carcinoma and is regulated by MYC[J]. Sci Rep, 2017, 7(1): 3274.
doi: 10.1038/s41598-017-03639-3
pmid: 28607447
|
[17] |
Tachie-Menson T, Gázquez-Gutiérrez A, Fulcher LJ, et al. Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H[J]. Cell Signal, 2020, 72: 109632.
doi: 10.1016/j.cellsig.2020.109632
URL
|
[18] |
Jia J, Yang F, Yang M, et al. P38/JNK signaling pathway mediates the fluoride-induced down-regulation of FAH83H[J]. Biochem Biophys Res Commun, 2016, 471(3): 386-390.
doi: 10.1016/j.bbrc.2016.02.027
URL
|