[1] |
Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration[J]. J Cell Physiol, 2018, 233(4): 2937-2948.
doi: 10.1002/jcp.26042
pmid: 28590066
|
[2] |
Simonson B, Das S. MicroRNA therapeutics: The next magic bullet[J]. Mini Rev Med Chem, 2015, 15(6): 467-474.
doi: 10.2174/1389557515666150324123208
pmid: 25807941
|
[3] |
Akao Y, Nakagawa Y, Hirata I, et al. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors[J]. Cancer Gene Ther, 2010, 17(6): 398-408.
doi: 10.1038/cgt.2009.88
pmid: 20094072
|
[4] |
Beg MS, Brenner A, Sachdev J, et al. Abstract C43: Safety, tolerability, and clinical activity of MRX34, the first-in-class liposomal miR-34 mimic, in patients with advanced solid tumors[J]. Mol Cancer Ther, 2015, 14(Supple):C43.
|
[5] |
Ofek P, Calderón M, Mehrabadi FS, et al. Restoring the oncosuppressor activity of microRNA-34a in glioblastoma using a polyglycerol-based polyplex[J]. Nanomed-Nanotechnol Biol Med, 2016, 12(7): 2201-2214.
doi: 10.1016/j.nano.2016.05.016
URL
|
[6] |
Bosch C, Melsen B, Vargervik K. Importance of the critical-size bone defect in testing bone-regenerating materials[J]. J Craniofac Surg, 1998, 9(4): 310-316.
doi: 10.1097/00001665-199807000-00004
pmid: 9780924
|
[7] |
Guo L, Xu JP, Qi J, et al. MicroRNA-17-92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblast apoptosis[J]. J Cell Sci, 2013, 126(Pt 4): 978-988.
doi: 10.1242/jcs.117515
pmid: 23264746
|
[8] |
Fang T, Wu QQ, Zhou L, et al. miR-106b-5p and miR-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation[J]. Exp Cell Res, 2016, 347(1): 74-82.
doi: 10.1016/j.yexcr.2016.07.010
pmid: 27426726
|
[9] |
Ma GD, Wang YJ, Li Y, et al. MiR-206, a key modulator of skeletal muscle development and disease[J]. Int J Biol Sci, 2015, 11(3): 345-352.
doi: 10.7150/ijbs.10921
pmid: 25678853
|
[10] |
Zhang W, Yao C, Wei ZY, et al. miR-128 promoted adipogenic differentiation and inhibited osteogenic differentiation of human mesenchymal stem cells by suppression of VEGF pathway[J]. J Recept Signal Transduct Res, 2017, 37(3): 217-223.
doi: 10.1080/10799893.2016.1212375
URL
|
[11] |
Vimalraj S, Selvamurugan N. MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts[J]. Int J Biol Macromol, 2014, 66: 194-202.
doi: 10.1016/j.ijbiomac.2014.02.030
pmid: 24560946
|
[12] |
Hao LY, Li J, Tian YW, et al. Changes in the microRNA profile of the mandible of ovariectomized mice[J]. Cell Physiol Biochem, 2016, 38(4): 1267-1287.
doi: 10.1159/000443074
pmid: 27008088
|
[13] |
Rojanarata T, Opanasopit P, Techaarpornkul S, et al. Chitosan-thiamine pyrophosphate as a novel carrier for siRNA delivery[J]. Pharm Res, 2008, 25(12): 2807-2814.
doi: 10.1007/s11095-008-9648-6
URL
|
[14] |
Al-Qadi S, Alatorre-Meda M, Zaghloul EM, et al. Chitosan-hyaluronic acid nanoparticles for gene silencing: the role of hyaluronic acid on the nanoparticles' formation and activity[J]. Colloids Surf B Biointerfaces, 2013, 103: 615-623.
doi: 10.1016/j.colsurfb.2012.11.009
URL
|
[15] |
Ragelle H, Riva R, Vandermeulen G, et al. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency[J]. J Control Release, 2014, 176: 54-63.
doi: 10.1016/j.jconrel.2013.12.026
URL
|
[16] |
Chen X, Gu S, Chen BF, et al. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway[J]. Biomaterials, 2015, 53: 239-250.
doi: 10.1016/j.biomaterials.2015.02.071
pmid: 25890723
|