| [1] |
Sumaria N, Martin S, Pennington DJ. Developmental origins of murine γδT-cell subsets[J]. Immunology, 2019, 156(4): 299-304.
doi: 10.1111/imm.2019.156.issue-4
URL
|
| [2] |
McMurray JL, von Borstel A, Taher TE, et al. Transcriptional profiling of human Vδ1 T cells reveals a pathogen-driven adaptive differentiation program[J]. Cell Rep, 2022, 39(8): 110858.
|
| [3] |
Zhao YJ, Niu C, Cui JW. Gamma-delta (γδ) T cells: Friend or foe in cancer development?[J]. J Transl Med, 2018, 16(1): 3.
doi: 10.1186/s12967-017-1378-2
pmid: 29316940
|
| [4] |
Wilharm A, Tabib Y, Nassar M, et al. Mutual interplay between IL-17-producing γδT cells and microbiota orchestrates oral mucosal homeostasis[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2652-2661.
doi: 10.1073/pnas.1818812116
pmid: 30692259
|
| [5] |
Lundqvist C, Hammarström ML. T-cell receptor gamma delta-expressing intraepithelial lymphocytes are present in normal and chronically inflamed human gingiva[J]. Immunology, 1993, 79(1): 38-45.
pmid: 7685315
|
| [6] |
Lin DJ, Hu QN, Yang LS, et al. The niche-specialist and age-related oral microbial ecosystem: Crosstalk with host immune cells in homeostasis[J]. Microb Genom, 2022, 8(6): mgen000811.
|
| [7] |
Hayday AC. γδ T cell update: Adaptate orchestrators of immune surveillance[J]. J Immunol, 2019, 203(2): 311-320.
doi: 10.4049/jimmunol.1800934
pmid: 31285310
|
| [8] |
Zeng X, Wei YL, Huang J, et al. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response[J]. Immunity, 2012, 37(3): 524-534.
doi: 10.1016/j.immuni.2012.06.011
pmid: 22960222
|
| [9] |
Edelblum KL, Singh G, Odenwald MA, et al. γδ intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice[J]. Gastroenterology, 2015, 148(7): 1417-1426.
doi: 10.1053/j.gastro.2015.02.053
pmid: 25747597
|
| [10] |
Krishnan S, Prise IE, Wemyss K, et al. Amphiregulin-producing γδT cells are vital for safeguarding oral barrier immune homeostasis[J]. Proc Natl Acad Sci USA, 2018, 115(42): 10738-10743.
doi: 10.1073/pnas.1802320115
URL
|
| [11] |
Dart RJ, Zlatareva I, Vantourout P, et al. Conserved γδT cell selection by BTNL proteins limits progression of human inflammatory bowel disease[J]. Science, 2023, 381(6663): eadh0301.
|
| [12] |
Fleming C, Cai YH, Sun X, et al. Microbiota-activated CD103+ DCs stemming from microbiota adaptation specifically drive γδT17 proliferation and activation[J]. Microbiome, 2017, 5(1): 46.
doi: 10.1186/s40168-017-0263-9
pmid: 28438184
|
| [13] |
Nagai A, Takahashi K, Sato N, et al. Abnormal proportion of gamma delta T cells in peripheral blood is frequently detected in patients with periodontal disease[J]. J Periodontol, 1993, 64(10): 963-967.
pmid: 8277405
|
| [14] |
Gemmell E, Seymour GJ. Gamma delta T lymphocytes in human periodontal disease tissue[J]. J Periodontol, 1995, 66(9): 780-785.
doi: 10.1902/jop.1995.66.9.780
pmid: 7500244
|
| [15] |
Yu JJ, Ruddy MJ, Wong GC, et al. An essential role for IL-17 in preventing pathogen-initiated bone destruction: Recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals[J]. Blood, 2007, 109(9): 3794-3802.
doi: 10.1182/blood-2005-09-010116
pmid: 17202320
|
| [16] |
Moutsopoulos NM, Konkel J, Sarmadi M, et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss[J]. Sci Transl Med, 2014, 6(229): 229ra40.
|
| [17] |
Xu S, Han YM, Xu XF, et al. IL-17A-producing gammadelta T cells promote CTL responses against Listeria monocytogenes infection by enhancing dendritic cell cross-presentation[J]. J Immunol, 2010, 185(10): 5879-5887.
doi: 10.4049/jimmunol.1001763
URL
|
| [18] |
Bonneville M, O'Brien RL, Born WK. γδT cell effector functions: A blend of innate programming and acquired plasticity[J]. Nat Rev Immunol, 2010, 10(7): 467-478.
doi: 10.1038/nri2781
pmid: 20539306
|
| [19] |
Dalton JE, Howell G, Pearson J, et al. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells[J]. J Immunol, 2004, 173(6): 3660-3667.
pmid: 15356111
|
| [20] |
Himoudi N, Morgenstern DA, Yan MY, et al. Human γδT lymphocytes are licensed for professional antigen presentation by interaction with opsonized target cells[J]. J Immunol, 2012, 188(4): 1708-1716.
|
| [21] |
Ansel KM, Ngo VN, Hyman PL, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles[J]. Nature, 2000, 406(6793): 309-314.
doi: 10.1038/35018581
|
| [22] |
Vantourout P, Eum J, Conde Poole M, et al. Innate TCRβ-chain engagement drives human T cells toward distinct memory-like effector phenotypes with immunotherapeutic potentials[J]. Sci Adv, 2023, 9(49): eadj6174.
|
| [23] |
Jameson JM, Cauvi G, Witherden DA, et al. A keratinocyte-responsive gamma delta TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis[J]. J Immunol, 2004, 172(6): 3573-3579.
pmid: 15004158
|
| [24] |
Wald S, Leibowitz A, Aizenbud Y, et al. γδT cells are essential for orthodontic tooth movement[J]. J Dent Res, 2021, 100(7): 731-738.
doi: 10.1177/0022034520984774
pmid: 33478315
|
| [25] |
Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23(1): 38-54.
doi: 10.1038/s41577-022-00746-9
|
| [26] |
Sandrock I, Reinhardt A, Ravens S, et al. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing γδT cells[J]. J Exp Med, 2018, 215(12): 3006-3018.
doi: 10.1084/jem.20181439
URL
|
| [27] |
Barel O, Aizenbud Y, Tabib Y, et al. γδT cells differentially regulate bone loss in periodontitis models[J]. J Dent Res, 2022, 101(4): 428-436.
doi: 10.1177/00220345211042830
URL
|
| [28] |
Maniati E, Hagemann T. IL-17 mediates resistance to anti-VEGF therapy[J]. Nat Med, 2013, 19(9): 1092-1094.
doi: 10.1038/nm.3333
pmid: 24013745
|
| [29] |
Gay D, Kwon O, Zhang ZK, et al. Fgf9 from dermal γδT cells induces hair follicle Neogenesis after wounding[J]. Nat Med, 2013, 19(7): 916-923.
doi: 10.1038/nm.3181
|
| [30] |
Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial gamma delta T cells[J]. Science, 1994, 266(5188): 1253-1255.
doi: 10.1126/science.7973709
pmid: 7973709
|
| [31] |
Jameson J, Ugarte K, Chen N, et al. A role for skin γδT cells in wound repair[J]. Science, 2002, 296(5568): 747-749.
pmid: 11976459
|
| [32] |
Solis ER, Jameson JM. Skin deep: Epithelial cell metabolism and chronic skin inflammation[J]. Immunity, 2024, 57(7): 1451-1453.
doi: 10.1016/j.immuni.2024.06.004
pmid: 38986439
|
| [33] |
Teles F, Martin L, Patel M, et al. Gingival crevicular fluid biomarkers during periodontitis progression and after periodontal treatment[J]. J Clin Periodontol, 2025, 52(1): 40-55.
doi: 10.1111/jcpe.v52.1
URL
|
| [34] |
Li XH, An TT, Yang Y, et al. TLR9 activation in large wound induces tissue repair and hair follicle regeneration via γδT cells[J]. Cell Death Dis, 2024, 15(8): 598.
doi: 10.1038/s41419-024-06994-y
pmid: 39153998
|
| [35] |
Ghoreschi K, Balato A, Enerbäck C, et al. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis[J]. Lancet, 2021, 397(10275): 754-766.
doi: 10.1016/S0140-6736(21)00184-7
pmid: 33515492
|
| [36] |
Papotto PH, Ribot JC, Silva-Santos B. IL-17(+) γδT cells as kick-starters of inflammation[J]. Nat Immunol, 2017, 18(6): 604-611.
doi: 10.1038/ni.3726
pmid: 28518154
|
| [37] |
Stark MA, Huo YQ, Burcin TL, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17[J]. Immunity, 2005, 22(3): 285-294.
doi: 10.1016/j.immuni.2005.01.011
pmid: 15780986
|
| [38] |
Lv RJ, Guo YT, Liu WC, et al. Revolutionizing cancer treatment: The emerging potential and potential challenges of in vivo self-processed CAR cell therapy[J]. Theranostics, 2024, 14(19): 7424-7447.
doi: 10.7150/thno.101941
URL
|