[1] Friskopp J. Ultrastructure of nondecalcified supragingival and subgingival Calculus[J]. J Periodontol, 1983, 54(9): 542-550.
[2] Chang JJ, Chen C, Chang J, et al. A narrative review of imaging tools for imaging subgingival Calculus[J]. Front Oral Maxillofac Med, 2023, 5: 4.
[3] Kamath DG, Umesh Nayak S. Detection, removal and prevention of Calculus: literature review[J]. Saudi Dent J, 2014, 26(1): 7-13.
[4] Partido BB, Webb CA, Carr MP. Comparison of Calculus detection among dental hygienists using an explorer and ultrasonic insert[J]. Int J Dent Hyg, 2019, 17(2): 192-198.
[5] Datta DD. Disclosing solutions used in dentistry[J]. World J Pharm Res, 2017: 1648-1656.
[6] Büttner M, Schneider L, Krasowski A, et al. Impact of noisy labels on dental deep learning-Calculus detection on bitewing radiographs[J]. J Clin Med, 2023, 12(9): 3058.
[7] Kripal, Krishna, and Aiswarya Dileep. ‘Role of Radiographic Evolution: An Aid to Diagnose Periodontal Disease’. Periodontal Disease - Diagnostic and Adjunctive Non-Surgical Considerations, IntechOpen, 5 Feb. 2020. Crossref, doi:10.5772/intechopen.88035.
[8] Hsiao TY, Lee SY, Sun CW. Optical polarimetric detection for dental hard tissue diseases characterization[J]. Sensors (Basel), 2019, 19(22): 4971.
[9] Hsiao TY, Ho YC, Lee SY, et al. Degree of polarization uniformity for dental Calculus visualization[J]. J Biophotonics, 2022, 15(6): e202200011.
[10] Hsiao TY, Ho YC, Chen MR, et al. Disease activation maps for subgingival dental Calculus identification based on intelligent dental optical coherence tomography[J]. Transl Biophotonics, 2021, 3(3): e202100001.
[11] Wang TA, Trung NH, Lee HC, et al. Quantitative evaluation of caries and Calculus with ultrahigh-resolution optical coherence tomography[J]. Bioengineering (Basel), 2023, 10(11): 1317.
[12] Kao MC, Lin CL, Kung CY, et al. Miniature endoscopic optical coherence tomography for Calculus detection[J]. Appl Opt, 2015, 54(24): 7419-7423.
[13] Shakibaie F, Law K, Walsh LJ. Improved detection of subgingival Calculus by laser fluorescence over differential reflectometry[J]. Lasers Med Sci, 2019, 34(9): 1807-1811.
[14] 胡杰, 杨扬, 秦艳利, 等. 激光诱导荧光牙结石诊断研究[J]. 沈阳理工大学学报, 2013, 32(2): 53-55, 58.
[15] 杨扬. 牙结石专用激光诱导荧光诊断系统研究 [D]: 沈阳理工大学; 2014.
[16] Wang C, Zhang RJ, Wei XL, et al. Machine learning-based automatic identification and diagnosis of dental caries and Calculus using hyperspectral fluorescence imaging[J]. Photodiagnosis Photodyn Ther, 2023, 41: 103217.
[17] Garcia Peraza Herrera LC, Horgan C, Ourselin S, et al. Hyperspectral image segmentation: a preliminary study on the Oral and Dental Spectral Image Database (ODSI-DB)[J]. Comput Meth Biomech Biomed Eng Imag Vis, 2023, 11(4): 1290-1298.
[18] Abdel Gawad AL, El-Sharkawy Y, Ayoub HS, et al. Classification of dental diseases using hyperspectral imaging and laser induced fluorescence[J]. Photodiagnosis Photodyn Ther, 2019, 25: 128-135.
[19] Satpathy A, Mohanty G, Bose A, et al. Fourier transfer infra-red spectroscopic analysis of supragingival and subgingival human dental Calculus[J]. Indian Jour Foren Med & Toxicol, 2019, 13(4): 1870.
[20] Lee YK. Fluorescence properties of human teeth and dental Calculus for clinical applications[J]. J Biomed Opt, 2015, 20(4): 040901.
[21] Fried WA, Chan KH, Darling CL, et al. Image-guided ablation of dental Calculus from root surfaces using a DPSS Er: YAG laser[J]. Lasers Surg Med, 2020, 52(3): 247-258.
[22] Agoob Alfergany M, Nasher R, Gutknecht N. Calculus removal and root surface roughness when using the Er: YAG or Er, Cr: YSGG laser compared with conventional instrumentation method: a literature review[J]. Photobiomodul Photomed Laser Surg, 2019, 37(4): 197-226.
[23] Shakibaie F, Walsh LJ. Dental Calculus detection using the VistaCam[J]. Clin Exp Dent Res, 2016, 2(3): 226-229.
[24] Shakibaie F, Walsh LJ. Performance differences in the detection of subgingival Calculus by laser fluorescence devices[J]. Lasers Med Sci, 2015, 30(9): 2281-2286.
[25] Archana V. Calculus detection technologies: where do we stand now?[J]. J Med Life, 2014, 7 Spec No. 2(Spec Iss 2): 18-23.
[26] Mothé D, de Oliveira K, Rotti A, et al. The micro from mega: Dental Calculus description and the first record of fossilized oral bacteria from an extinct proboscidean[J]. Int J Paleopathol, 2021, 33: 55-60.
[27] Patini R, Zunino B, Foti R, et al. Clinical evaluation of the efficacy of Perioscan® on plaque-induced gingivitis in pediatric age. [J].Senses and Sciences,2015, 2:98-103.
[28] Figueredo CA, Catunda RQ, Gibson MP, et al. Use of ultrasound imaging for assessment of the periodontium: a systematic review[J]. J Periodontal Res, 2024, 59(1): 3-17.
[29] Renaud M, Delpierre A, Becquet H, et al. Intraoral ultrasonography for periodontal tissue exploration: a review[J]. Diagnostics (Basel), 2023, 13(3): 365.
[30] Karhade AV, Schwab JH. Introduction to The Spine Journal special issue on artificial intelligence and machine learning[J]. Spine J, 2021, 21(10): 1601-1603.
[31] Wang C, Zhang RJ, Wei XL, et al. Deep learning and sub-band fluorescence imaging-based method for caries and Calculus diagnosis embeddable on different smartphones[J]. Biomed Opt Express, 2023, 14(2): 866-882.
[32] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[33] Venkatesan R., Li B.(2017). Convolutional Neural Networks in Visual Computing: A Concise Guide (1st ed.). Boca Raton:CRC Press.
[34] Park S, Erkinov H, Al Mehedi Hasan M, et al. Periodontal disease classification with color teeth images using convolutional neural networks[J]. Electronics, 2023, 12(7): 1518.
|