[1] |
慕创创, 李刚. 基于神经网络的深度学习在医学影像中的研究进展[J]. 中华口腔医学杂志, 2019, 54(7): 492-497.
|
[2] |
梅宏翔, 程俊豪, 李一洲, 等. 机器学习在颌面部囊肿及肿瘤中应用的研究进展[J]. 华西口腔医学杂志, 2020, 38(6): 687-691.
|
[3] |
Chen H, Zhang KL, Lyu PJ, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films[J]. Sci Rep, 2019, 9(1): 3840.
doi: 10.1038/s41598-019-40414-y
pmid: 30846758
|
[4] |
Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol, 2019, 48(4): 20180051.
doi: 10.1259/dmfr.20180051
URL
|
[5] |
Miki Y, Muramatsu C, Hayashi T, et al. Classification of teeth in cone-beam CT using deep convolutional neural network[J]. Comput Biol Med, 2017, 80: 24-29.
doi: S0010-4825(16)30289-X
pmid: 27889430
|
[6] |
Esmaeilyfard R, Paknahad M, Dokohaki S. Sex classification of first molar teeth in cone beam computed tomography images using data mining[J]. Forensic Sci Int, 2021, 318: 110633.
doi: 10.1016/j.forsciint.2020.110633
URL
|
[7] |
Lee JH, Kim DH, Jeong SN, et al. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm[J]. J Dent, 2018, 77: 106-111.
doi: 10.1016/j.jdent.2018.07.015
URL
|
[8] |
Johari M, Esmaeili F, Andalib A, et al. Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: An ex vivo study[J]. Dentomaxillofacial Radiol, 2017, 46(2): 20160107.
doi: 10.1259/dmfr.20160107
URL
|
[9] |
Ekert T, Krois J, Meinhold L, et al. Deep learning for the radiographic detection of apical lesions[J]. J Endod, 2019, 45(7): 917-922.e5.
doi: S0099-2399(19)30256-0
pmid: 31160078
|
[10] |
Kim J, Lee HS, Song IS, et al. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs[J]. Sci Rep, 2019, 9(1): 17615.
doi: 10.1038/s41598-019-53758-2
pmid: 31772195
|
[11] |
Chang HJ, Lee SJ, Yong TH, et al. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis[J]. Sci Rep, 2020, 10(1): 7531.
doi: 10.1038/s41598-020-64509-z
|
[12] |
Arık SÖ, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks[J]. J Med Imaging (Bellingham), 2017, 4(1): 014501.
|
[13] |
Park JH, Hwang HW, Moon JH, et al. Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD[J]. Angle Orthod, 2019, 89(6): 903-909.
doi: 10.2319/022019-127.1
URL
|
[14] |
Jung SK, Kim TW. New approach for the diagnosis of extractions with neural network machine learning[J]. Am J Orthod Dentofacial Orthop, 2016, 149(1): 127-133.
doi: 10.1016/j.ajodo.2015.07.030
URL
|
[15] |
Choi HI, Jung SK, Baek SH, et al. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery[J]. J Craniofac Surg, 2019, 30(7): 1986-1989.
doi: 10.1097/SCS.0000000000005650
URL
|
[16] |
Lee JS, Adhikari S, Liu L, et al. Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: A preliminary study[J]. Dentomaxillofac Radiol, 2019, 48(1): 20170344.
doi: 10.1259/dmfr.20170344
URL
|
[17] |
Kim Y, Lee KJ, Sunwoo L, et al. Deep learning in diagnosis of maxillary sinusitis using conventional radiography[J]. Invest Radiol, 2019, 54(1): 7-15.
doi: 10.1097/RLI.0000000000000503
pmid: 30067607
|
[18] |
Murata M, Ariji Y, Ohashi Y, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography[J]. Oral Radiol, 2019, 35(3): 301-307.
doi: 10.1007/s11282-018-0363-7
pmid: 30539342
|
[19] |
Xu SP, Liu C, Zong YS, et al. An early diagnosis of oral cancer based on three-dimensional convolutional neural networks[J]. IEEE Access, 2019, 7: 158603-158611.
doi: 10.1109/Access.6287639
URL
|
[20] |
Ariji Y, Fukuda M, Kise Y, et al. Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 127(5): 458-463.
doi: 10.1016/j.oooo.2018.10.002
URL
|