[1] |
Wang LM, Peng W, Zhao ZP, et al. Prevalence and treatment of diabetes in China, 2013-2018[J]. JAMA, 2021, 326(24): 2498-2506.
doi: 10.1001/jama.2021.22208
pmid: 34962526
|
[2] |
张鹏, 丁一, 王琪. 炎性衰老在糖尿病牙周炎中的作用机制及研究现状[J]. 国际口腔医学杂志, 2017, 44(6): 664-668.
|
[3] |
Wang Q, Nie L, Zhao PF, et al. Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging[J]. Int J Oral Sci, 2021, 13(1): 11.
doi: 10.1038/s41368-021-00116-6
pmid: 33762572
|
[4] |
Cervino G, Terranova A, Briguglio F, et al. Diabetes: Oral health related quality of life and oral alterations[J]. Biomed Res Int, 2019, 2019: 5907195.
|
[5] |
Ko KI, Sculean A, Graves DT. Diabetic wound healing in soft and hard oral tissues[J]. Transl Res, 2021, 236: 72-86.
doi: 10.1016/j.trsl.2021.05.001
pmid: 33992825
|
[6] |
Zhang SJ, Song S, Wang SY, et al. Type 2 diabetes affects postextraction socket healing and influences first-stage implant surgery: A study based on clinical and animal evidence[J]. Clin Implant Dent Relat Res, 2019, 21(3): 436-445.
|
[7] |
Al-Sofiani ME, Ganji SS, Kalyani RR. Body composition changes in diabetes and aging[J]. J Diabetes Complications, 2019, 33(6): 451-459.
|
[8] |
Aguayo-Mazzucato C, Andle J, Lee TB Jr, et al. Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes[J]. Cell Metab, 2019, 30(1): 129-142.e4.
doi: S1550-4131(19)30246-3
pmid: 31155496
|
[9] |
Muriach M, Flores-Bellver M, Romero FJ, et al. Diabetes and the brain: Oxidative stress, inflammation, and autophagy[J]. Oxid Med Cell Longev, 2014, 2014: 102158.
|
[10] |
Martel J, Ojcius DM, Wu CY, et al. Emerging use of senolytics and senomorphics against aging and chronic diseases[J]. Med Res Rev, 2020, 40(6): 2114-2131.
|
[11] |
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage[J]. DNA Repair, 2016, 42: 63-71.
doi: 10.1016/j.dnarep.2016.04.008
pmid: 27156098
|
[12] |
Perucca P, Cazzalini O, Mortusewicz O, et al. Spatiotemporal dynamics of p21CDKN1A protein recruitment to DNA-damage sites and interaction with proliferating cell nuclear antigen[J]. J Cell Sci, 2006, 119(Pt 8): 1517-1527.
doi: 10.1242/jcs.02868
pmid: 16551699
|
[13] |
Chandra A, Lagnado AB, Farr JN, et al. Targeted clearance of p21- but not p16-positive senescent cells prevents radiation-induced osteoporosis and increased marrow adiposity[J]. Aging Cell, 2022, 21(5): e13602.
|
[14] |
Khosla S, Farr JN, Kirkland JL. Inhibiting cellular senescence: A new therapeutic paradigm for age-related osteoporosis[J]. J Clin Endocrinol Metab, 2018, 103(4): 1282-1290.
doi: 10.1210/jc.2017-02694
pmid: 29425296
|
[15] |
Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: From mechanisms to therapeutic opportunities[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 75-95.
|
[16] |
Elamir Y, Gianakos AL, Lane JM, et al. The effects of diabetes and diabetic medications on bone health[J]. J Orthop Trauma, 2020, 34(3): e102-e108.
|
[17] |
Shen YF, Zhang YF, Zhou Z, et al. Dysfunction of macrophages leads to diabetic bone regeneration deficiency[J]. Front Immunol, 2022, 13: 990457.
|
[18] |
Chandra A, Lagnado AB, Farr JN, et al. Targeted reduction of senescent cell burden alleviates focal radiotherapy-related bone loss[J]. J Bone Miner Res, 2020, 35(6): 1119-1131.
doi: 10.1002/jbmr.3978
pmid: 32023351
|
[19] |
Faust HJ, Zhang H, Han J, et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis[J]. J Clin Invest, 2020, 130(10): 5493-5507.
doi: 10.1172/JCI134091
pmid: 32955487
|
[20] |
Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment[J]. Nat Med, 2017, 23(6): 775-781.
doi: 10.1038/nm.4324
pmid: 28436958
|
[21] |
Yao ZT, Murali B, Ren QH, et al. Therapy-induced senescence drives bone loss[J]. Cancer Res, 2020, 80(5): 1171-1182.
doi: 10.1158/0008-5472.CAN-19-2348
pmid: 31932453
|
[22] |
Childs BG, Durik M, Baker DJ, et al. Cellular senescence in aging and age-related disease: From mechanisms to therapy[J]. Nat Med, 2015, 21(12): 1424-1435.
doi: 10.1038/nm.4000
pmid: 26646499
|
[23] |
Cohn RL, Gasek NS, Kuchel GA, et al. The heterogeneity of cellular senescence: Insights at the single-cell level[J]. Trends Cell Biol, 2023, 33(1): 9-17.
|
[24] |
Wang LC, Wang BS, Gasek NS, et al. Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity[J]. Cell Metab, 2022, 34(1): 186.
|
[25] |
Kondoh H, Hara E. Targeting p21 for diabetes: Another choice of senotherapy[J]. Cell Metab, 2022, 34(1): 5-7.
doi: 10.1016/j.cmet.2021.12.008
pmid: 34986338
|
[26] |
Palmer AK, Gustafson B, Kirkland JL, et al. Cellular senescence: At the nexus between ageing and diabetes[J]. Diabetologia, 2019, 62(10): 1835-1841.
doi: 10.1007/s00125-019-4934-x
pmid: 31451866
|
[27] |
Farr JN, Fraser DG, Wang HT, et al. Identification of senescent cells in the bone microenvironment[J]. J Bone Miner Res, 2016, 31(11): 1920-1929.
doi: 10.1002/jbmr.2892
pmid: 27341653
|
[28] |
Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice[J]. Nat Med, 2017, 23(9): 1072-1079.
doi: 10.1038/nm.4385
pmid: 28825716
|
[29] |
Sawada S, Chosa N, Ishisaki A, et al. Enhancement of gingival inflammation induced by synergism of IL-1β and IL-6[J]. Biomed Res, 2013, 34(1): 31-40.
|
[30] |
Zaremba-Czogalla M, Hryniewicz-Jankowska A, Tabola R, et al. A novel regulatory function of CDKN1A/p21 in TNFα-induced matrix metalloproteinase 9-dependent migration and invasion of triple-negative breast cancer cells[J]. Cell Signal, 2018, 47: 27-36.
doi: S0898-6568(18)30071-8
pmid: 29588220
|
[31] |
Wei Y, Fu JY, Wu WJ, et al. Quercetin prevents oxidative stress-induced injury of periodontal ligament cells and alveolar bone loss in periodontitis[J]. Drug Des Devel Ther, 2021, 15: 3509-3522.
|