| [1] |
Piancino MG, Isola G, Cannavale R, et al. From periodontal mechanoreceptors to chewing motor control: A systematic review[J]. Arch Oral Biol, 2017, 78: 109-121.
doi: S0003-9969(17)30048-1
pmid: 28226300
|
| [2] |
Trulsson M. Sensory-motor function of human periodontal mechanoreceptors[J]. J Oral Rehabil, 2006, 33(4): 262-273.
doi: 10.1111/j.1365-2842.2006.01629.x
pmid: 16629881
|
| [3] |
Klineberg I, Calford MB, Dreher B, et al. A consensus statement on osseoperception[J]. Clin Exp Pharmacol Physiol, 2005, 32(1-2): 145-146.
|
| [4] |
Klineberg I, Murray G. Osseoperception: Sensory function and proprioception[J]. Adv Dent Res, 1999, 13: 120-129.
|
| [5] |
van Steenberghe D. From osseointegration to osseoperception[J]. J Dent Res, 2000, 79(11): 1833-1837.
pmid: 11145351
|
| [6] |
Douguet D, Honoré E. Mammalian mechanoelectrical transduction: Structure and function of force-gated ion channels[J]. Cell, 2019, 179(2): 340-354.
doi: S0092-8674(19)30968-7
pmid: 31585078
|
| [7] |
Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo 2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330(6000): 55-60.
|
| [8] |
Della Pietra A, Mikhailov N, Giniatullin R. FM1-43 dye memorizes Piezo 1 activation in the trigeminal nociceptive system implicated in migraine pain[J]. Int J Mol Sci, 2023, 24(2): 1688.
|
| [9] |
Mikhailov N, Leskinen J, Fagerlund I, et al. Mechanosensitive meningeal nociception via Piezo channels: Implications for pulsatile pain in migraine?[J]. Neuropharmacology, 2019, 149: 113-123.
doi: S0028-3908(18)30729-9
pmid: 30768945
|
| [10] |
Xu X, Liu SY, Liu H, et al. Piezo channels: Awesome mechanosensitive structures in cellular mechanotransduction and their role in bone[J]. Int J Mol Sci, 2021, 22(12): 6429.
|
| [11] |
Chesler AT, Szczot M, Bharucha-Goebel D, et al. The role of PIEZO2 in human mechanosensation[J]. N Engl J Med, 2016, 375(14): 1355-1364.
|
| [12] |
Zhang MM, Wang YF, Geng J, et al. Mechanically activated piezo channels mediate touch and suppress acute mechanical pain response in mice[J]. Cell Rep, 2019, 26(6): 1419-1431.e4.
doi: S2211-1247(19)30085-3
pmid: 30726728
|
| [13] |
Yang J, Zhang JN, Yang HL, et al. The potential role of Piezo 2 in the mediation of visceral sensation[J]. Neurosci Lett, 2016, 630: 158-163.
|
| [14] |
Szczot M, Liljencrantz J, Ghitani N, et al. Piezo 2 mediates injury-induced tactile pain in mice and humans[J]. Sci Transl Med, 2018, 10(462): eaat9892.
|
| [15] |
Mikhailov N, Plotnikova L, Singh P, et al. Functional characterization of mechanosensitive Piezo 1 channels in trigeminal and somatic nerves in a neuron-on-chip model[J]. Int J Mol Sci, 2022, 23(3): 1370.
|
| [16] |
Huang Y, van Dessel J, Martens W, et al. Sensory innervation around immediately vs. delayed loaded implants: A pilot study[J]. Int J Oral Sci, 2015, 7(1): 49-55.
doi: 10.1038/ijos.2014.53
pmid: 25214361
|
| [17] |
Song DD, Huang Y, Van Dessel J, et al. Effect of platelet-rich and platelet-poor plasma on peri-implant innervation in dog mandibles[J]. Int J Implant Dent, 2019, 5(1): 40.
doi: 10.1186/s40729-019-0193-3
pmid: 31797145
|
| [18] |
Song DD, Liang X, Zheng H, et al. Peri-implant myelinated nerve fibers: Histological findings in dogs[J]. J Periodontal Res, 2020, 55(4): 567-573.
doi: 10.1111/jre.12744
pmid: 32154923
|
| [19] |
Jin Y, Li J, Wang YT, et al. Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells[J]. Angle Orthod, 2015, 85(1): 87-94.
doi: 10.2319/123113-955.1
pmid: 24810489
|
| [20] |
Shen Y, Pan YC, Guo SY, et al. The roles of mechanosensitive ion channels and associated downstream MAPK signaling pathways in PDLC mechanotransduction[J]. Mol Med Rep, 2020, 21(5): 2113-2122.
doi: 10.3892/mmr.2020.11006
pmid: 32323761
|
| [21] |
Won J, Vang H, Lee PR, et al. Piezo 2 expression in mechanosensitive dental primary afferent neurons[J]. J Dent Res, 2017, 96(8): 931-937.
doi: 10.1177/0022034517702342
pmid: 28388364
|
| [22] |
Song DD, Shujaat S, Politis C, et al. Osseoperception following dental implant treatment: A systematic review[J]. J Oral Rehabil, 2022, 49(5): 573-585.
|
| [23] |
González-Gil D, Flores-Fraile J, López-Marcos J. Tactile sensibility thresholds in implant prosthesis, complete dentures and natural dentition: Review about their value in literature[J]. Medicina (Kaunas), 2022, 58(4): 501.
|
| [24] |
Higaki N, Goto T, Ishida Y, et al. Do sensation differences exist between dental implants and natural teeth?: A meta-analysis[J]. Clin Oral Implants Res, 2014, 25(11): 1307-1310.
|
| [25] |
Wang D, Tao JX, Jin AQ, et al. Tactile sensation of natural teeth and dental implants in the somatosensory cortex[J]. J Prosthodont Res, 2022, 66(2): 272-278.
|
| [26] |
Tao JX, Wang D, Jin AQ, et al. The role of gingival mechanoreceptors in the tactile function of dental implants[J]. Neurosci Lett, 2022, 774: 136502.
|
| [27] |
Griesbach GS, Hovda DA. Cellular and molecular neuronal plasticity[J]. Handb Clin Neurol, 2015, 128: 681-690.
doi: 10.1016/B978-0-444-63521-1.00042-X
pmid: 25701914
|
| [28] |
Gulyaeva NV. Molecular mechanisms of neuroplasticity: An expanding universe[J]. Biochemistry, 2017, 82(3): 237-242.
|
| [29] |
Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury[J]. Cell Mol Life Sci, 2020, 77(20): 3977-3989.
|
| [30] |
Shin MS, Jeong HY, An DI, et al. Treadmill exercise facilitates synaptic plasticity on dopaminergic neurons and fibers in the mouse model with Parkinson's disease[J]. Neurosci Lett, 2016, 621: 28-33.
|
| [31] |
Akpinar I, Anil N, Parnas L. A natural tooth's stress distribution in occlusion with a dental implant[J]. J Oral Rehabil, 2000, 27(6): 538-545.
pmid: 10888282
|
| [32] |
Huang Y, Corpas LS, Martens W, et al. Histomorphological study of myelinated nerve fibres in the periodontal ligament of human canine[J]. Acta Odontol Scand, 2011, 69(5): 279-286.
doi: 10.3109/00016357.2011.563245
pmid: 21395471
|