[1] Fernandez-Yague MA, Abbah SA, McNamara L, et al. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies[J]. Adv Drug Deliv Rev, 2015, 84:1-29.
[2] Castro NJ, O'Brien J, Zhang LG. Integrating biologically inspired nanomaterials and table-top stereolithography for 3Dprinted biomimeticosteochondralscaffolds[J]. Nanoscale, 2015, 7(33):14010-14022.
[3] Minardi S, Pandolfi L, Taraballi F, et al. PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins[J]. ACS Appl Mater Interfaces, 2015, 7(30):16364-16373
[4] Yun YR, Jang JH, Jeon E, et al. Administration of growth factors for bone regeneration[J]. Regen Med, 2012, 7(3):369-385.
[5] Mehta M, Schmidt-Bleek K, Duda GN, et al. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone[J]. Adv Drug Deliv Rev, 2012, 64(12):1257-1276.
[6] 王姹,徐燕. 生长因子在牙周组织再生中的有效释放方式[J]. 国际口腔医学杂志, 2012(2):265-268.
[7] Izadifar M, Haddadi A, Chen X, et al. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering[J]. Nanotechnology, 2015, 26(1):012001.
[8] Chaudhary LR, Hofmeister AM, Hruska KA. Differential growth factor control of bone formation osteoprogenitor differentiation[J]. Bone, 2004, 34(3):402-411.
[9] Langdahl BL, Kassem M, Moller MK, et al. The effects of IGF-I and IGF-II on proliferation and differentiation of human osteoblasts and interactions with growth hormone[J]. Eur J Clin Invest, 1998,28(3):176-183.
[10] Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering[J]. Adv Drug Deliv Rev, 2015,84:45-67.
[11] Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments[J]. J R Soc Interface, 2011, 8(55):153-170.
[12] Suarez-Gonzalez D, Lee JS, Diggs A, et al. Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity[J]. Tissue Eng Part A, 2014, 20(15-16):2077-2087.
[13] Vasita R, Katti DS. Growth factor-delivery systems for tissue engineering: a materials perspective[J]. Expert Rev Med Devices, 2006, 3(1):29-47.
[14] Bhargava MM, Hidaka C, Hannafin JA, et al. Effects of hepatocyte growth factor and platelet-derived growth factor on the repair of meniscal defects in vitro[J]. In Vitro Cell Dev Biol Anim, 2005, 41(8-9):305-310.
[15] Schwartz-Arad D, Ofec R, Eliyahu G, et al. Long term follow-up of dental implants placed in autologous onlay bone graft[J]. Clin Implant Dent Relat Res, 2014, doi:10.111/cid.12288.
[16] Anitua E, Tejero R, Zalduendo MM, et al. Plasma rich in growth factors promotes bone tissue regeneration by stimulating proliferation, migration, and autocrine secretion in primary human osteoblasts[J]. J Periodontol, 2013, 84(8):1180-1190.
[17] Yu X, Khalil A, Dang PN, et al. Multilayered inorganic microparticles for tunable dual growth factor delivery[J]. Adv Funct Mater, 2014, 24(20):3082-3093.
[18] Raiche AT, Puleo DA. Cell responses to BMP-2 and IGF-I released with different time-dependent profiles[J]. J Biomed Mater Res A, 2004, 69(2):342-350.
[19] Teng W, Wang Q, Chen Y, et al. Controllably local gene delivery mediated by polyelectrolyte multilayer films assembled from gene-loaded nanopolymersomes and hyaluronic acid[J]. Int J Nanomedicine, 2014, 9:5013-5024.
[20] Qiu T, Chen Y, Song J, et al. Preparation of cross-linked, multilayer-coated fluorescent microspheres with functional groups on the surface for bioconjugation[J]. ACS Appl Mater Interfaces, 2015,7(15):8260-8267.
[21] Richardson TP, Peters MC, Ennett AB, et al. Polymeric system for dual growth factor delivery[J]. Nat Biotechnol, 2001, 19(11):1029-1034.
[22] Burdick JA, Ward M, Liang E, et al. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels[J]. Biomaterials, 2006, 27(3):452-459.
[23] Charles LF, Woodman JL, Ueno D, et al. Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice[J]. Exp Gerontol, 2015, 64:62-69.
[24] Censi R, Dubbini A, Matricardi P. Bioactive hydrogel scaffolds - advances in cartilage regeneration through controlled drug delivery[J]. Curr Pharm Des, 2015, 21(12):1545-1555.25] Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery[J]. J Control Release, 2014, 194:1-19.
[26] 唐功文,赵蕴慧,袁晓燕. 微球-三维支架复合体系控制释放生长因子的研究进展[J]. 高分子通报, 2012(12):8-15.
[27] Kim K, Lam J, Lu S, et al. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model[J]. J Control Release, 2013, 168(2):166-178.
[28] Chen FM, Chen R, Wang XJ, et al. In vitro cellular responses to scaffolds containing two microencapulated growth factors[J]. Biomaterials, 2009, 30(28):5215-5224.
[29] Lv J, Xiu P, Tan J, et al. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue[J]. Biomed Mater, 2015, 10(3):035013.
[30] Yu Y, Chen J, Chen R, et al. Enhancement of VEGF-Mediated Angiogenesis by 2-N,6-O-Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds[J]. ACS Appl Mater Interfaces, 2015,7(18):9982-9990.
[31] Mirdailami O, Soleimani-, Dinarvand R, et al. Controlled release of rhEGF and rhbFGF from electrospun scaffolds for skin regeneration[J]. J Biomed Mater Res A, 2015, 103(10):3374-3385.
[32] Bera T, Freeman EJ, Mcdonough JA, et al. Liquid Crystal Elastomer Microspheres as Three-Dimensional Cell Scaffolds Supporting the Attachment and Proliferation of Myoblasts[J]. ACS Appl Mater Interfaces, 2015,7(26):14528-14535.
[33] Lam J, Lu S, Kasper FK, et al. Strategies for controlled delivery of biologics for cartilage repair[J]. Adv Drug Deliv Rev, 2015, 84:123-134.
[34] Borcard F, Kong P, Journot C, et al. Surface modification of biomaterials for conjugation with human fetal osteoblasts[J]. Chimia (Aarau), 2013, 67(4):213-217.
[35] Morachis JM, Mahmoud EA, Almutairi A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles[J]. Pharmacol Rev, 2012, 64(3):505-519. |