[1] Martina M, Subramanyam G, Weaver JC, et al. Developing macroporous bicontinuous materials as scaffolds for tissue engineering[J]. Biomaterials, 2005, 26(28):5609-5616.
[2] Zakaria SM, Zein SH S, Othman MR, et al. Nanophase hydroxyapatite as a biomaterial in advanced hard tisue enginering:a review[J].Tissue eng Part B Rev, 19(5):431-441.
[3] 曹谊林. 组织工程学理论与实践[M]. 上海: 上海科学技术出版社,2004:3-8
[4] Nukavarapu SP, Kumbar SG, Brown JL, et al. Polyphosphazene/nano-Hydroxyapatite composite microsphere scaffolds for bone tissue engineering[J]. Biomacromolecules, 2008, 9:(7):1818-1825.
[5] 毛秋华, 徐普, 王彬娉,等. 纳米级淡水珍珠粉的制备研究[J]. 口腔医学研究. 2016, 32(12):1244-1247.
[6] Lieberman JR, Daluiski A, Einhom TA, et al. The role of growth factors in the repair of bone biology and clinical applications[J]. J Bone Joint Surg Am, 2002,84-A(6):1032-1044.
[7] Chappuis V, Gamer L, Cox K, et al. Periosteal BMP2 activity drives bone graft healing[J]. Bone, 2012, 51(4):800-809.
[8] Mussano F, Ciccone G, Ceccarelli M, et al. Bone morphogenetic proteins and bone defects: a systematic review[J]. Spine (Phila Pa 1976), 2007, 32(7):824-830.
[9] Alakpa EV, Burgess KEV, Chung P, et al. Nacre topography produces higher crystallinity in bone than chemically induced osteogenesis[J]. ACS nano, 2017, 11(7):6717-6727.
[10] Ma MG, Dong YY, Fu LH, et al.Cellulose/CaCO3 nanocomposites: microwave ionic liquid synthesis, characterization, and biological activity[J]. Carbohydr polym, 2013, 92(2):1669-1676.
[11] Mouriès LP, Almeida MJ, Milet C, et al. Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts[J]. Comp Biochem Physiol B Biochem Mol Biol, 2002,132(1):217-229.
[12] Lamghari M, Almeida MJ, Berland S, et al. Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies[J]. Bone, 1999, 25(2 Suppl):S91-S94.
[13] Flausse A, Henrionnet C, Dossot M. Osteogenic differentiation of human bone marrow mesenchymal stem cells in hydrogel containing nacre powder[J]. J Biomed Mater Res A, 2013, 101(11):3211-3218.
[14] Deng Y, Li G, Song W, et al. Preparation and properties of pearl powder/polypropylene composites and their biocompatibility[J]. Biomed Mater Eng, 2015, 26 Suppl 1:S27-S34.
[15] Silve C, Lopez E, Vidal B, et al. Nacre initiates biomineralization by human osteoblasts maintained in vitro[J].Calcif Tissue Int, 1992, 51(5):363-369.
[16] Yang YL, Chang CH, Huang CC, et al. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering[J]. Bio-medical materials and engineering. 2014, 24(1):979-985.
[17] Shen Y, Zhu J, Zhang H, et al. In vitro osteogenetic activity of pearl [J]. Biomaterials, 2006, 27(2):281-287.
[18] Liu YS, Huang QL, Kienzle A, et al. In vitro degradation of porous PLLA/pearl powder composite scaffolds[J]. Mater Sci Eng C Mater Biol Appl,2014, 38:227-234.
[19] Liu Y, Huang Q, Feng Q. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration[J]. Biomedl Mater, 2013, 8(6):065001.
[20] Xiao WD, Zhong ZM, Tang YZ, et al. Repair of critical size bone defects with porous poly(D,L-lactide)/nacre nanocomposite hollow scaffold[J]. Saudi Med J,2012,36(6):601-607.
[21] Deng Y, Li G, Song W, et al. Preparation and properties of pearl powder/polypropylene composites and their biocompatibility[J]. Biomed Mater Eng, 2015, 26 Suppl 1: S27-S34.
[22] 李婷, 孙静, 谢富强,等. 骨形成蛋白2/珍珠层粉/壳聚糖支架制备及生物性能研究[J]. 中国生物工程杂志,2015, 35(11):1-6.
[23] Chandler RL, Chandler KJ, McFarland KA. et al. Bmp2 transcription in osteoblast progenitors is regulated by a distant 3' enhancer located 1563 kilobases from the promoter[J]. Mol Cell Biol,2007, 27(8):2934-2951.
[24] Govender S, Csimma C, Genant HK. et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients[J]. J Bone Joint Surg Am, 2002, 84-A (12):2123-2134.
[25] Swiontkowski MF, Aro HT, Donell S. et al. Recombinant human bone morphogenetic protein-2 in open tibial fractures. A subgroup analysis of data combined from two prospective randomized studies[J]. J Bone Joint Surg Am, 2006, 88(6):1258-1265.
[26] Park SY, Kim KH, Shin SY. et al. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model[J]. Tissue Eng Part A, 2013, 19(21-22):2495-2505.
[27] He X, Dziak R, Yuan X. et al. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects[J]. PloS one, 2013, 8(4): e60473.
[28] Hwang DY, On SW. Song SI. Bone regenerative effect of recombinant human bone morphogenetic protein-2 after cyst enucleation[J]. Maxillofac Plast Reconstr Surg, 2016, 38(1):22.
[29] Bhakta G, Rai B, Lim ZX. et al. Hyaluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2[J]. Biomaterials, 2012, 33(26):6113-6122.
[30] Brown KV, Li B, Guda T. et al. Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release[J]. Tissue Eng Part A, 2011, 17(13-14):1735-1746.
[31] 李树祎, 周苗等. 三维打印聚乳酸-羟基乙酸/磷酸三钙骨修复支架的生物学评价[J]. 中华口腔医学杂志, 2016, 51(11):661-666.
[32] Zhao X, Komatsu DE, Hadjiargyrou M. Delivery of rhBMP-2 plasmid DNA complexes via a PLLA/collagen electrospun scaffold induces ectopic bone formation[J]. J Biomed Nanotechnol, 2016, 12(6):1285-1296.
[33] 刘启省, 张东刚. 重组人骨形态发生蛋白2/骨修复材料的制备与性能[J]. 中国组织工程研究, 2016, 20(38):5664-5671.
[34] Zhang M, Ma Y, Li R, et al.RhBMP-2-loaded Poly (lactic-co-glycolic acid) microspheres fabricated by coaxial electrospraying for protein delivery[J]. J Biomater Sci Polym Ed, 2017, 28(18):2205-2219.
[35] Tanaka M, Haniu H, Kamanaka T. et al. Physico-chemical, in vitro and in vivo evaluation of a 3D unidirectional porous hydroxyapatite scaffold for bone regeneration[J]. Materials (Basel) ,2017, 10(1).
[36] Wang C, Zhao Q, et al. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering[J]. Biofabrication, 2017, 9(2):025031.
[37] Chang AR, Cho TH, Hwang SJ. Receptor activator of nuclear factor Kappa-B ligand-induced local osteoporotic canine mandible model for the evaluation of peri-Implant bone regeneration[J]. Tissue Eng Part C Methods, 2017, 23(11):781-794.
[38] Hosseinkhani H, Hosseinkhani M, Khademhosseini A, et al. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold[J]. J Control Release, 2007, 117(3):380-386.
[39] 王建钧, 陈建庭, 杨春露. 珍珠粉水溶性基质对兔骨髓基质干细胞BMP-2和Cbfa1基因表达的影响[J]. 南方医科大学学报, 2007, 27(12):1838-1840.
[40] Green DW, Kwon HJ, Jung HS. Osteogenic potency of nacre on human mesenchymal stem cells[J]. Mol Cells, 2015, 38(3):267-272.
[41] Zhao M, Shi Y, He M, et al. PfSMAD4 plays a role in biomineralization and can transduce bone morphogenetic protein-2 signals in the pearl oyster Pinctada fucata[J]. BMC Dev Biol, 2016, 16:9.
|