[1] |
陈伟健, 谢炜星, 温龙飞, 等. Smad与骨质疏松症[J]. 中国骨质疏松杂志, 2017, 23(8): 1100-1104.
|
[2] |
Li Y, He X, Li Y, et al. Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells: a possible cause for reduced osteogenesis and increased adipogenesis in older individuals[J]. J Bone Miner Res, 2011, 26(11): 2656-2664.
doi: 10.1002/jbmr.480
pmid: 21812028
|
[3] |
Zhou S, Greenberger JS, Epperly MW, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts[J]. Aging Cell, 2008, 7(3): 335-343.
doi: 10.1111/j.1474-9726.2008.00377.x
pmid: 18248663
|
[4] |
Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207.
doi: S0091-6749(17)31593-2
pmid: 29074454
|
[5] |
Towler BP, Jones CI, Newbury SF. Mechanisms of regulation of mature miRNAs[J]. Biochem Soc Trans, 2015, 43(6): 1208-1214.
doi: 10.1042/BST20150157
URL
|
[6] |
Smalheiser NR, Torvik VI. Complications in mammalian microRNA target prediction[J]. Methods Mol Biol, 2006, 342: 115-127.
pmid: 16957371
|
[7] |
Chamberlain G, Fox J, Ashton B, et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing[J]. Stem Cells, 2007, 25(11): 2739-2749.
doi: 10.1634/stemcells.2007-0197
pmid: 17656645
|
[8] |
Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells[J]. Differentiation, 2016, 92(1-2): 41-51.
doi: 10.1016/j.diff.2016.02.005
pmid: 27012163
|
[9] |
Dalle Carbonare L, Innamorati G, Valenti MT. Transcription factor Runx2 and its application to bone tissue engineering[J]. Stem Cell Rev Rep, 2012, 8(3): 891-897.
doi: 10.1007/s12015-011-9337-4
pmid: 22139789
|
[10] |
Vimalraj S, Arumugam B, Miranda PJ, et al. Runx2: structure, function, and phosphorylation in osteoblast differentiation[J]. Int J Biol Macromol, 2015, 78: 202-208.
doi: 10.1016/j.ijbiomac.2015.04.008
pmid: 25881954
|
[11] |
Farshdousti Hagh M, Noruzinia M, Mortazavi Y, et al. Different methylation patterns of RUNX2, OSX, DLX5 and BSP in osteoblastic differentiation of mesenchymal stem cells[J]. Cell J, 2015, 17(1): 71-82.
pmid: 25870836
|
[12] |
Narayanan A, Srinaath N, Rohini M, et al. Regulation of Runx2 by microRNAs in osteoblast differentiation[J]. Life Sci, 2019, 232: 116676.
doi: 10.1016/j.lfs.2019.116676
URL
|
[13] |
Deng L, Hu G, Jin L, et al. Involvement of microRNA-23b in TNF-α-reduced BMSC osteogenic differentiation via targeting runx2[J]. J Bone Miner Metab, 2018, 36(6): 648-660.
doi: 10.1007/s00774-017-0886-8
pmid: 29234953
|
[14] |
史宏利, 姜鑫, 徐翠娣, 等. miR-124-3p抑制骨髓间充质干细胞向成骨分化降低骨质量在老年骨质疏松中的作用[J]. 中华内分泌代谢杂志, 2019(3): 233-239.
|
[15] |
Zhang S, Liu Y, Zheng Z, et al. MicroRNA-223 suppresses osteoblast differentiation by inhibiting DHRS3[J]. Cell Physiol Biochem, 2018, 47(2): 667-679.
doi: 10.1159/000490021
pmid: 29794437
|
[16] |
Chen L, Song J, Cui J, et al. MicroRNAs regulate adipocyte differentiation[J]. Cell Biol Int, 2013, 37(6): 533-546.
doi: 10.1002/cbin.10063
pmid: 23504919
|
[17] |
Seifert A, Werheid DF, Knapp SM, et al. Role of Hox genes in stem cell differentiation[J]. World J Stem Cells, 2015, 7(3): 583-595.
doi: 10.4252/wjsc.v7.i3.583
pmid: 25914765
|
[18] |
Karbiener M, Fischer C, Nowitsch S, et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma[J]. Biochem Biophys Res Commun, 2009, 390(2): 247-251.
doi: 10.1016/j.bbrc.2009.09.098
URL
|
[19] |
Kim SY, Kim AY, Lee HW, et al. MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression[J]. Biochem Biophys Res Commun, 2010, 392(3): 323-328.
doi: 10.1016/j.bbrc.2010.01.012
URL
|
[20] |
汪涛, 颜瑞巧, 曹俊, 等. miRNA-140-5p在人骨髓间充质干细胞成脂分化中的表达及其靶基因的预测[J]. 南方医科大学学报, 2017, 37(2): 199-203.
|
[21] |
Lin Z, He H, Wang M, et al. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate[J]. Cell Prolif, 2019, 52(6): e12688.
doi: 10.1111/cpr.v52.6
URL
|
[22] |
Li Y, Yang F, Gao M, et al. MiR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO[J]. Mol Ther Nucleic Acids, 2019, 17: 590-600.
doi: 10.1016/j.omtn.2019.06.023
URL
|
[23] |
Su X, Liao L, Shuai Y, et al. MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway[J]. Cell Death Dis, 2015, 6: e1851.
doi: 10.1038/cddis.2015.221
|
[24] |
Oskowitz AZ, Lu J, Penfornis P, et al. Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression[J]. Proc Natl Acad Sci USA, 2008, 105(47): 18372-18377.
doi: 10.1073/pnas.0809807105
pmid: 19011087
|
[25] |
Li CJ, Xiao Y, Yang M, et al. Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging[J]. J Clin Invest, 2018, 128(12): 5251-5266.
doi: 10.1172/JCI99044
URL
|
[26] |
Xu R, Shen X, Si Y, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment[J]. Aging Cell, 2018, 17(4): e12794.
doi: 10.1111/acel.2018.17.issue-4
URL
|
[27] |
Li CJ, Cheng P, Liang MK, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation[J]. J Clin Invest, 2015, 125(4): 1509-1522.
doi: 10.1172/JCI77716
URL
|
[28] |
Periyasamy-Thandavan S, Burke J, Mendhe B, et al. MicroRNA-141-3p negatively modulates SDF-1 expression in age-dependent pathophysiology of human and murine bone marrow stromal cells[J]. J Gerontol A Biol Sci Med Sci, 2019, 74(9): 1368-1374.
doi: 10.1093/gerona/gly186
URL
|