[1] |
Huang HM, Yang RL, Zhou YH. Mechanobiology of periodontal ligament stem cells in orthodontic tooth movement[J]. Stem Cells Int, 2018, 2018: 6531216.
|
[2] |
Yoo JH, Lee SM, Bae MK, et al. Effect of orthodontic forces on the osteogenic differentiation of human periodontal ligament stem cells[J]. J Oral Sci, 2018, 60(3): 438-445.
doi: 10.2334/josnusd.17-0310
pmid: 29794399
|
[3] |
赵艳, 刘佳, 秦文, 等. 不同等级应力对人炎症牙周膜干细胞分化及细胞骨架重组的研究[J]. 临床口腔医学杂志, 2019, 35(3): 131-135.
|
[4] |
Liu J, Li Q, Liu SY, et al. Periodontal ligament stem cells in the periodontitis microenvironment are sensitive to static mechanical strain[J]. Stem Cells Int, 2017, 2017: 1380851.
|
[5] |
秦文, 严青, 郭冬会, 等. 长链非编码RNA在炎症来源牙周膜干细胞力学刺激加载前后的表达谱分析[J]. 临床口腔医学杂志, 2019, 35(6): 323-326.
|
[6] |
Tan K, Peng YT, Guo P. miR-29a promotes osteogenic differentiation of mesenchymal stem cells via targeting HDAC4[J]. Eur Rev Med Pharmacol Sci, 2018, 22(11): 3318-3326.
|
[7] |
Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: Regenerative potency in periodontium[J]. Stem Cells Dev, 2019, 28(15): 974-985.
doi: 10.1089/scd.2019.0031
pmid: 31215350
|
[8] |
Onizuka S, Iwata T. Application of periodontal ligament-derived multipotent mesenchymal stromal cell sheets for periodontal regeneration[J]. Int J Mol Sci, 2019, 20(11): 2796.
doi: 10.3390/ijms20112796
URL
|
[9] |
Hirschfeld J, Reichardt E, Sharma P, et al. Interest in orthodontic tooth alignment in adult patients affected by periodontitis: A questionnaire-based cross-sectional pilot study[J]. J Periodontol, 2019, 90(9): 957-965.
doi: 10.1002/JPER.18-0578
pmid: 30950037
|
[10] |
Martin C, Celis B, Ambrosio N, et al. Effect of orthodontic therapy in periodontitis and non-periodontitis patients: A systematic review with meta-analysis[J]. J Clin Periodontol, 2021, 49: 72-101.
doi: 10.1111/jcpe.v49.S24
URL
|
[11] |
Ponzetti M, Rucci N. Osteoblast differentiation and signaling: Established concepts and emerging topics[J]. Int J Mol Sci, 2021, 22(13): 6651.
doi: 10.3390/ijms22136651
URL
|
[12] |
Chen YL, Wan SM, Li Q, et al. Genome-wide integrated analysis revealed functions of lncRNA-miRNA-mRNA interaction in growth of intermuscular bones in Megalobrama amblycephala[J]. Front Cell Dev Biol, 2021, 8: 603815.
doi: 10.3389/fcell.2020.603815
URL
|
[13] |
Guo QY, Guo Q, Xiao Y, et al. Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA[J]. Bone, 2020, 141: 115617.
doi: 10.1016/j.bone.2020.115617
URL
|
[14] |
Zhang YH, Song J, Shen L, et al. Systematic identification of lncRNAs and circRNAs-associated CeRNA networks in human lumbar disc degeneration[J]. Biotech Histochem, 2019, 94(8): 606-616.
doi: 10.1080/10520295.2019.1622782
pmid: 31271316
|
[15] |
Wen JT, Liu J, Wang B, et al. Prediction of self-perception of patient in rheumatoid arthritis with the key RNAs expression profiles[J]. Front Med (Lausanne), 2020, 7: 567.
|
[16] |
Lu GD, Cheng P, Liu T, et al. BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis[J]. Front Cell Dev Biol, 2020, 8: 608521.
doi: 10.3389/fcell.2020.608521
URL
|
[17] |
Jung YD, Park SK, Kang D, et al. Epigenetic regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells[J]. Redox Biol, 2020, 37: 101716.
doi: 10.1016/j.redox.2020.101716
URL
|