[1] |
Nugent M. microRNAs and fracture healing[J]. Calcif Tissue Int, 2017, 101(4): 355-361.
doi: 10.1007/s00223-017-0296-x
URL
|
[2] |
Steinhäuser EW. Historical development of orthognathic surgery[J]. J Cranio Maxillofac Surg, 1996, 24(4): 195-204.
doi: 10.1016/S1010-5182(96)80002-3
URL
|
[3] |
Pignolo RJ, Kassem M. Circulating osteogenic cells: Implications for injury, repair, and regeneration[J]. J Bone Miner Res, 2011, 26(8): 1685-1693.
doi: 10.1002/jbmr.370
pmid: 21538513
|
[4] |
Huang XY, Yuan TZ, Tschannen M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing[J]. BMC Genomics, 2013, 14: 319.
doi: 10.1186/1471-2164-14-319
pmid: 23663360
|
[5] |
Rekker K, Saare M, Roost AM, et al. Comparison of serum exosome isolation methods for microRNA profiling[J]. Clin Biochem, 2014, 47(1-2): 135-138.
doi: 10.1016/j.clinbiochem.2013.10.020
pmid: 24183884
|
[6] |
Zhang BY, Yuan PT, Xu G, et al. DUSP6 expression is associated with osteoporosis through the regulation of osteoclast differentiation via ERK2/Smad2 signaling[J]. Cell Death Dis, 2021, 12(9): 825.
doi: 10.1038/s41419-021-04110-y
pmid: 34475393
|
[7] |
Fan LK, Wang JX, Ma C. miR125a attenuates BMSCs apoptosis via the MAPK-ERK pathways in the setting of craniofacial defect reconstruction[J]. J Cell Physiol, 2020, 235(3): 2857-2865.
doi: 10.1002/jcp.29191
pmid: 31578723
|
[8] |
Chen L, Heikkinen L, Wang CL, et al. Trends in the development of miRNA bioinformatics tools[J]. Brief Bioinform, 2019, 20(5): 1836-1852.
doi: 10.1093/bib/bby054
pmid: 29982332
|
[9] |
Ban E, Kwon TH, Kim A. Delivery of therapeutic miRNA using polymer-based formulation[J]. Drug Deliv Transl Res, 2019, 9(6): 1043-1056.
doi: 10.1007/s13346-019-00645-y
|
[10] |
Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics[J]. Crit Rev Oncol Hematol, 2016, 98: 12-23.
doi: 10.1016/j.critrevonc.2015.10.003
pmid: 26481951
|
[11] |
Li QS, Meng FY, Zhao YH, et al. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells[J]. Bone Joint Res, 2017, 6(8): 464-471.
doi: 10.1302/2046-3758.68.BJR-2016-0208.R2
pmid: 28784704
|
[12] |
Shi L, Feng L, Liu Y, et al. microRNA-218 promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing[J]. Calcif Tissue Int, 2018, 103(2): 227-236.
doi: 10.1007/s00223-018-0410-8
|
[13] |
Lee WY, Li N, Lin SE, et al. miRNA-29b improves bone healing in mouse fracture model[J]. Mol Cell Endocrinol, 2016, 430: 97-107.
doi: 10.1016/j.mce.2016.04.014
pmid: 27113026
|
[14] |
张帆, 程乃萱, 韩迎春, 等. miR-181a-5p对人主动脉平滑肌细胞成骨样分化的影响[J]. 中国动脉硬化杂志, 2021, 29(1): 24-29.
|
[15] |
Mazziotta C, Lanzillotti C, Iaquinta MR, et al. microRNAs modulate signaling pathways in osteogenic differentiation of mesenchymal stem cells[J]. Int J Mol Sci, 2021, 22(5): 2362.
doi: 10.3390/ijms22052362
URL
|
[16] |
Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration[J]. J Cell Physiol, 2018, 233(4): 2937-2948.
doi: 10.1002/jcp.26042
pmid: 28590066
|
[17] |
Chang ML, Lin H, Fu HD, et al. microRNA-195-5p regulates osteogenic differentiation of periodontal ligament cells under mechanical loading[J]. J Cell Physiol, 2017, 232(12): 3762-3774.
doi: 10.1002/jcp.25856
pmid: 28181691
|
[18] |
Wang HQ, Xie Z, Hou TY, et al. miR-125b regulates the osteogenic differentiation of human mesenchymal stem cells by targeting BMPR1b[J]. Cell Physiol Biochem, 2017, 41(2): 530-542.
doi: 10.1159/000457013
pmid: 28214897
|
[19] |
Arfat Y, Basra MAR, Shahzad M, et al. miR-208a-3p suppresses osteoblast differentiation and inhibits bone formation by targeting ACVR1[J]. Mol Ther Nucleic Acids, 2018, 11: 323-336.
doi: 10.1016/j.omtn.2017.11.009
URL
|