[1] |
Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans[J]. Microbiol Spectr, 2019, 7(1): 1-18.
|
[2] |
Cugini C, Shanmugam M, Landge N, et al. Therole of exopolysaccharides in oral biofilms[J]. J Dent Res, 2019, 98(7): 739-745.
doi: 10.1177/0022034519845001
pmid: 31009580
|
[3] |
Liu N, Li X, Wang MF, et al. DexA70, the truncated form of a self-produced dextranase, effectively disrupts Streptococcus mutans biofilm[J]. Front Microbiol, 2021, 12: 2274.
|
[4] |
Zhang LL, Liang EJ, Cheng Y, et al. Is combined medication with natural medicine a promising therapy for bacterial biofilm infection?[J]. Biomedecine Pharmacother, 2020, 128: 110184.
|
[5] |
Mi GJ, Shi D, Wang M, et al. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces[J]. Adv Healthc Mater, 2018, 7(13): 1-23.
|
[6] |
刘崇懿. 苯硼酸修饰的树形高分子用于生物大分子的胞内递送[D]. 上海: 华东师范大学, 2019.
|
[7] |
Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria-A review[J]. Acta Histochem, 2018, 120(4): 303-311.
doi: S0065-1281(18)30027-8
pmid: 29606555
|
[8] |
Chevalier M, Ranque S, Prêcheur I. Oral fungal-bacterial biofilm models in vitro: A review[J]. Med Mycol, 2018, 56(6): 653-667.
doi: 10.1093/mmy/myx111
pmid: 29228383
|
[9] |
McEwen SA, Collignon PJ. Antimicrobial resistance: A one health perspective[J]. Microbiol Spectr, 2018, 6(2):1-26.
|
[10] |
Ferri M, Ranucci E, Romagnoli P, et al. Antimicrobial resistance:A global emerging threat to public health systems[J]. Crit Rev Food Sci Nutr, 2017, 57(13): 2857-2876.
doi: 10.1080/10408398.2015.1077192
URL
|
[11] |
Fulaz S, Vitale S, Quinn L, et al. Nanoparticle-biofilm interactions: The role of the EPS matrix[J]. Trends Microbiol, 2019, 27(11): 915-926.
doi: S0966-842X(19)30185-4
pmid: 31420126
|
[12] |
Mubeen B, AnsarAN, Rasool R, et al. Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics[J]. Antibiotics (Basel), 2021, 10(12): 1473.
|
[13] |
Makabenta JMV, Nabawy A, Li CH, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J]. Nat Rev Microbiol, 2021, 19(1): 23-36.
doi: 10.1038/s41579-020-0420-1
|
[14] |
Bhattacharjee S. DLS and Zeta potential-what they are and what they are not?[J]. J Control Release, 2016, 235: 337-351.
doi: 10.1016/j.jconrel.2016.06.017
URL
|
[15] |
Manciu M, Manciu FS, Ruckenstein E. On the surface tension and Zeta potential of electrolyte solutions[J]. Adv Colloid Interface Sci, 2017, 244: 90-99.
doi: 10.1016/j.cis.2016.06.006
URL
|
[16] |
Zaichik S, Steinbring C, Jelkmann M, et al. Zeta potential changing nanoemulsions: Impact of PEG-corona on phosphate cleavage[J]. Int J Pharm, 2020, 581: 119299.
doi: 10.1016/j.ijpharm.2020.119299
URL
|
[17] |
Xi YJ, Wang Y, Gao JY, et al. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis[J]. ACS Nano, 2019, 13(12): 13645-13657.
doi: 10.1021/acsnano.9b03237
pmid: 31585041
|
[18] |
Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release[J]. Chem Rev, 2016, 116(4): 2602-2663.
doi: 10.1021/acs.chemrev.5b00346
pmid: 26854975
|
[19] |
Han SL, Abiko Y, Washio J, et al. Green tea-derived epigallocatechin gallate inhibits acid production and promotes the aggregation of Streptococcus mutans and non-mutans Streptococci[J]. Caries Res, 2021, 55(3): 205-214.
doi: 10.1159/000515814
URL
|
[20] |
Zhang Q, Ma QZ, Wang Y, et al. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans[J]. Int J Oral Sci, 2021, 13(1): 30.
doi: 10.1038/s41368-021-00137-1
|