[1] Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world[J]. Genes Dev, 2009,23(13): 1494-1504.
[2] Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation[J]. Mol Cell, 2010,39(6): 925-938.
[3] Braconi C, Kogure T, Valeri N, et al. MicroRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer[J]. Oncogene, 2011, 30(47): 4750-4756.
[4] Liu S, Ghalei H, Luhrmann R, et al. Structural basis for the dual U4 and U4atac snRNA-binding specificity of spliceosomal protein hPrp31[J]. RNA, 2011,17(9): 1655-1663.
[5] Pradet-Balade B, Girard C, Boulon S, et al. CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport[J]. EMBO J, 2011, 30(11): 2205-2218.
[6] Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma[J]. Nature, 2010, 467(7311): 86-90.
[7] Rossi JJ. New hope for a microRNA therapy for liver cancer[J]. Cell, 2009,137(6): 990-992.
[8] Diederichs S, Haber DA. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression[J]. Cell, 2007,131(6): 1097-1108.
[9] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions[J]. Nat Rev Genet, 2009,10(3): 155-159.
[10] Chen LL, Carmichael GG. Long noncoding RNAs in mam-malian cells: what, where, and why[J]? Wiley Interdiscip Rev RNA, 2010, 1(1): 2-21.
[11] Orom UA, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells[J]. Cell, 2010, 143(1): 46-58.
[12] Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer[J]. Oncogene, 2003, 22(39): 8031-8041.
[13] Yang F, Zhang L, Huo XS, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans[J]. Hepatology, 2011, 54(5): 1679-1689.
[14] Pibouin L, Villaudy J, Ferbus D, et al. Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas[J]. Cancer Genet Cytogenet, 2002,133(1): 55-60.
[15] Rangel LB, Sherman?鄄Baust CA, Wernyj RP, et al. Characterization of novel human ovarian cancer-specific transcripts (HOSTs) identified by serial analysis of gene expression[J]. Oncogene, 2003, 22(46): 7225-7232.
[16] Fu X, Ravindranath L, Tran N, et al. Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1[J]. DNA Cell Biol, 2006, 25(3): 135-141.
[17] Chan AS, Thorner PS, Squire JA, et al. Identification of a novel gene NCRMS on chromosome 12q21 with differential expression between rhabdomyosarcoma subtypes[J]. Oncogene, 2002, 21(19): 3029-3037.
[18] Chow LT , Broker TR, Steinberg BM. The natural history of human papillomavirus infections of the mucosal epithelia[J]. APMIS, 2010, 118(6-7) :422-449.
[19] Pim D, Banks L. Interaction of viral oncoproteins with cellular target molecules: infection with high-risk vs low-risk human papillomaviruses[J]. APMIS, 2010,118(6-7) : 471-493.
[20] Pfeffer S, Zavolan M, Gr-sser FA, et al. Identification of virus-encoded microRNAs[J]. Science, 2004, 304(5671) : 734-736.
[21] Cai X, Li G, Laimins LA, et al. Human papillomavirus genotype 31 does not express detectable microRNA levels during latent or productive virus replication[J]. J Virol, 2006, 80(21):10890-10893.
[22] Martinez I, Gardiner AS, Board KF, et al. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells[J]. Oncogene, 2008, 27(18):2575-2582.
[23] Wang X, Wang HK, McCoy JP, et al. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6[J]. RNA, 2009, 15(4):637-647.
[24] Melar-New M, Laimins LA. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins[J]. J Virol, 2010, 84(10):5212-5221.
[25] Cervigne NK, Reis PP, Machado J, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma[J]. Hum Mol Genet, 2009, 18(24):4818-4829.
[26] Tran N,McLean T, Zhang X, et al. MicroRNA expression profiles in head and neck cancer cell lines[J]. Biochem Biophys Res Commun, 2007, 358(1):12-17.
[27] Kozaki K, Imoto I, Mogi S, et al. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer[J]. Cancer Res, 2008, 68(7):2094-2105.
[28] Hui AB, Lenarduzzi M, Krushel T, et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas[J]. Clin Cancer Res, 2010, 16(4):1129-1139.
[29] Avissar M, Christensen BC, Kelsey KT, et al. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2009, 15(8): 2850-2855.
[30] Chang SS, Jiang WW, Smith I, et al. MicroRNA alterations in head and neck squamous cell carcinoma[J]. Int J Cancer, 2008, 123(12):2791-2797.
[31] Li J, Huang H, Sun L, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor[J]. Clin Cancer Res, 2009, 15(12):3998-4008.
[32] Liu CJ, Kao SY, Tu HF, et al. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer[J]. Oral Dis, 2010, 16(4):360-364.
[33] Avissar M, Christensen BC, Kelsey KT, et al. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2009, 15(8):2850-2855.[34] Li J, Huang H, Sun L, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor[J]. Clin Cancer Res, 2009, 15(12):3998-4008.
[35] Liu X, Yu J, Jiang L, et al. MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines[J]. Cancer Genomics Proteomics, 2009, 6(3):131-139.
[36] Jin Y, Wang C, Liu X, et al. Molecular characterization of the microRNA-138-Fos-like antigen 1 (FOSL1) regulatory module in squamous cell carcinoma[J]. J Biol Chem, 2011, 286(46):40104-40109.
[37] Liu X, Wang C, Chen Z, et al. MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines[J]. Biochem J, 2011, 440(1):23-31.
[38] Jiang L, Liu X, Kolokythas A, et al. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma[J]. Int J Cancer, 2010, 127(3):505-512.
[39] Xu Q, Liu XM, Chen W, et al. Inhibiting adenoid cystic carcinoma cells growth and metastasis by blocking the expression of ADAM 10 using RNA interference[J]. J Transl Med, 2010, 8:136 .
[40] Yu ZW, Zhong LP, Ji T, et al. MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines [J]. Oral Oncol, 2010, 46(4): 317-322.
[41] Liu X, Jiang L, Wang A, et al. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines [J]. Cancer Lett,2009, 286(2): 217-222.
[42] Wang Y, Huang JW, Li M, et al. MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression [J]. Mol Cancer Res, 2011, 9(8): 1100-1111.
[43] Kulshreshtha R, Ferracin M, Negrini M, et al. Regulation of microRNA expression: the hypoxic component [J]. Cell Cycle, 2007, 6(12): 1426-1431.
[44] Lee KM, Choi EJ, Kim IA. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling[J]. Radiother Oncol, 2011, 101(1): 171-176.
[45] Zhang J, Sun Q, Zhang Z, et al. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop[J]. Oncogene, 2012, [Epub ahead of print] |