[1] Siegel RL, Miller KD, Jemal A. Cancer statistics[J]. CA Cancer J Clin, 2015, 65(1):5-29.
[2] Lingen MW, Pinto A, Mendes RA, et al. Genetics/epigenetics of oral premalignancy: current status and future research[J]. Oral Dis, 2011, 17(1):7-22.
[3] Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states[J]. Science, 2010, 330(6004):612-616.
[4] Costa FF. Epigenomics in cancer management[J]. Cancer Manag Res, 2010, 2:255-265.
[5] lyer LM, Abhiman S, Aravind L. Natural history of eukaryotic DNA methylation systems[J]. Prog Mol Biol Transl Sci, 2011, 101:25-104.
[6] Hassig CA, Schreiber SL. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs[J]. Curr Opin Chem Biol, 1997, l(3):300-308.
[7] Suh N, Blelloch R. Small RNAs in early mammalian development: from gametes to gastrulation[J]. Development, 2011, 138(9):1653-1661.
[8] Hammoud SS, Cairns BR, Jones DA. Epigenetic regulation of colon cancer and intestinal stem cells[J]. Curr Opin Cell Biol, 2013, 25(2):177-183.
[9] Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics[J]. Nat Rev Genet, 2008, 9(6):465-476.
[10] Esteller M. Dormant hypermethylated tumour suppressor genes: questions and answers[J]. J Pathol, 2005, 205(2):172-180.
[11] Milutinovic S, Knox JD, Szyf M. DNA methyltransferase inhibition induces the transcription of the tumor suppressor p21(WAF1/CIP1/sdi1)[J]. J Biol Chem, 2000, 275(9):6353-6359.
[12] Nolan T, Braccini L, Azzalin G, et al. The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa[J]. Nucleic Acids Res, 2005, 33(5):1564-1573.
[13] Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells[J]. Nature, 2002, 416(6880):552-556.
[14] Jones PA , Baylin SB. The fundamental role of epigenetic events in cancer[J]. Nat Rev Genet, 2002, 3(6):415-428.
[15] Mydlarz WK, Hennessey PT, Califano JA. Advances and perspectives in the molecular diagnosis of head and neck cancer[J]. Expert Opin Med Diagn. 2010, 4(1):53-65.
[16] Radhakrishnan R, Kabekkodu S, Satyamoorthy K. DNA hypermethylation as an epigenetic mark for oral cancer diagnosis[J]. J Oral Pathol Med, 2011, 40(9):665-676.
[17] Díez-Pérez R, Campo-Trapero J, Cano-Sánchez J, et al. Methylation in oral cancer and pre-cancerous lesions (Review)[J]. Oncol Rep, 2011, 25(5):1203-1209.
[18] SupieG, Kozomara R, Brankovie-MagieM, et al. Gene hypermethylation in tumor tissue of advanced oral squamous cell carcinoma patients[J]. Oral Oncol, 2009, 45(12):1051-1057.
[19] de Freitas Cordeiro-Silva M, Oliveira ZF, de Podestá JR, et al. Methylation analysis of cancer-related genes in non-neoplastic cells from patients with oral squamous cell carcinoma[J]. Mol Biol Rep, 2011, 38(8):5435-5441.
[20] Pannone G, Bufo P, Santoro A, et al. WNT pathway in oral cancer: epigenetic inactivation of WNT-inhibitors[J]. Oncol Rep, 2010, 24(4):1035-1041.
[21] Huang KH, Huang SF, Chen IH, et al. Methylation of RASSF1A, RASSF2A, and HIN-1 is associated with poor outcome after radiotherapy, but not surgery, in oral squamous cell carcinoma[J]. Clin Cancer Res, 2009, 15(12):4174-4180.
[22] Supic G, Jovic N, Kozomara R, et al. Interaction between the MTHFR C677T polymorphism and alcohol--impact on oral cancer risk and multiple DNA methylation of tumor-related genes[J]. J Dent Res, 2011, 90(1):65-70.
[23] Kozaki K, Imoto I, Mogi S, et al. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer[J]. Cancer Res, 2008, 68(7):2094-2105.
[24] Shaw R. The epigenetics of oral cancer[J]. Int J Oral Maxillofac Surg, 2006, 35(2):101-108.
[25] Mancuso M, Matassa DS, Conte M, et al. H3K4 histonemethylation in oral squamous cell carcinoma[J]. Acta Biochim Pol, 2009, 56(3),405-410.
[26] Balasubramanian A, Subramaniam R,Narayanan V,et al. BRD7 promoter hypermethylation as an indicator of well differentiated oral squamous cell carcinomas[J]. Asian Pac J Cancer Prev, 2015, 16(4),1615-1619.
[27] Reddy VR, Annamalai T,Narayanan V,et al. Hypermethylation of promoter region of LATS1-a CDK interacting protein in oral squamous cell carcinomas--a pilot study in India[J]. Asian Pac J Cancer Prev, 2015, 16(4),1599-1603.
[28] Lin HY, Hung SK, Lee MS, et al. DNA methylome analysis identifies epigenetic silencing of FHIT as a determining factor for radiosensitivity in oral cancer:an outcome-predicting and treatment-implicating study[J]. Oncotarget, 2015, 6(2):915-934.
[29] Melchers LJ, Clausen MJ, Mastik MF, et al. Identification of methylation markers for the prediction of nodal metastasis in oral and oropharyngeal squamous cell carcinoma[J]. Epigenetics, 2015, 10(9):850-860.
[30] Jenuwein T, Allis CD.Translating the histone code[J]. Science, 2001, 293(5532):1074-1080.
[31] Strahl BD, Allis CD. The language of covalent histone modifications[J]. Nature, 2000, 403(6765):41-45.
[32] Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications[J]. Nat Struct Mol Biol, 2013, 20(3):259-266.
[33] Tasoulas J, Giaginis C, Patsouris E, et al. Histone deacetylase inhibitors in oral squamous cell carcinoma treatment[J]. Expert Opin Investig Drugs, 2015, 24(1):69-78.
[34] Sakuma T, Uzawa K, Onda T, et al. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma[J]. Int J Oncol, 2006, 29(1):117-124.
[35] Kiyoshima T, Yoshida H, Wada H, et al. Chemoresistance to concanamycin A1 in human oral squamous cell carcinoma is attenuated by an HDAC inhibitor partly via suppression of Bcl-2 expression[J]. PLoS One, 2013, 8(11):e80998.
[36] Ohta M, Abe A, Ohno F, et al. Positive and negative regulation of podoplanin expression by TGF-β and histone deacetylase inhibitors in oral and pharyngeal squamous cell carcinoma cell lines[J]. Oral Oncol, 2013, 49(1):20-26.
[37] Ahn MY, Ahn SG, Yoon JH. Apicidin, a histone deaceylase inhibitor, induces both apoptosis and autophagy in human oral squamous carcinoma cells[J]. Oral Oncol, 2011, 47(11):1032-1038.
[38] Jeon YJ, Ko SM, Cho JH, et al. The HDAC inhibitor, panobinostat, induces apoptosis by suppressing the expresssion of specificity protein 1 in oral squamous cell carcinoma[J]. Int J Mol Med, 2013, 32(4):860-866.
[39] Hu J, Colburn NH. Histone deacetylase inhibition down-regulates cyclin D1 transcription by inhibiting nuclear factor-kappaB/p65 DNA binding[J]. Mol Cancer Res, 2005, 3(2):100-109.
[40] Miki Y, Mukae S, Murakami M, et al. Butyrate inhibits oral cancer cell proliferation and regulates expression of secretory phospholipase A2-X and COX-2[J]. Anticancer Res, 2007, 27(3B):1493-1502.
[41] Wang A, Zeng R, Huang H. Retinoic acid and sodium butyrate as cell cycle regulators in the treatment of oral squamous carcinoma cells[J]. Oncol Res, 2008, 17(4):175-182.
[42] Murakami J, Asaumi J, Kawai N, et al. Effects of histone deacetylase inhibitor FR901228 on the expression level of telomerase reverse transcriptase in oral cancer[J]. Cancer Chemother Pharmacol, 2005, 56(1):22-28.
[43] Yamamoto D, Shima K, Matsuo K, et al. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2) in human oral cancer cell line[J]. PLoS One, 2010, 5(9):e12554.
[44] Lachner M, Jenuwein T. The many faces of histone lysine methylation[J]. Curr Opin Cell Biol, 2002, 14(3):286-298.
[45] Li J, Huang H, Sun L, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor[J]. Clin Cancer Res, 2009, 15(12):3998-4008.
[46] Liu X, Wang A, Heidbreder CE, et al. MicroRNA-24 targeting RNA-binding protein DND1 in tongue squamous cell carcinoma[J]. FEBS Lett, 2010, 584(18):4115-4120.
[47] Lu YC, Chang JT, Liao CT, et al. OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4- JNK- TIMP1-MMP signaling pathway[J]. Mol Cancer, 2014, 13:218.
[48] Chang CJ, Hsu CC, Chang CH, et al. Let-7d functions as novel regulator of epithelial- mesenchymal transition and chemoresistant property in oral cancer[J]. Oncol Rep, 2011, 26(4):1003-1010.
[49] Long XB, Sun GB, Hu S, et al. Let-7a microRNA functions as a potential tumor suppressor in human laryngeal cancer[J]. Oncol Rep, 2009, 22(5):1189-1195.
[50] Sasahira T, Kurihara M, Bhawal UK, et al. Downregulationof miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF--A in oral cancer[J]. Br J Cancer, 2012, 107(4):700-706.
[51] Nagata S, Hamada T, Yamada N, et al. Aberrant DNA methylation of tumor-related genes in oral rinse: a noninvasive method for detection of oral squamous cell carcinoma[J]. Cancer, 2012, 118(17):4298-4308.
[52] Kusumoto T, Hamada T, Yamada N, et al. Comprehensive epigenetic analysis using oral rinse samples: a pilot study[J]. J Oral Maxillofac Surg, 2012, 70(6):1486-1494. |