[1] Intini G, Katsuragi Y, Kirkwood KL, et al. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions[J]. Adv Dent Res, 2014, 26(1):38-46.
[2] Yang WH, Kuo MYP, Liu CM, et al. Curcumin inhibits TGF1-induced CCN2 via Src, JNK, and Smad3 in gingiva[J]. J Dent Res, 2013, 92(7):629-634.
[3] Fan DP, Liu S, Jiang SC, et al. The use of SHP-2 gene transduced bone marrow mesenchymal stem cells to promote osteogenic differentiation and bone defect repair in rat[J]. J Biomed Mater Res Part A, 2016, 104(8):1871-1881.
[4] Wu HM, Fang L, Shen QY, et al. SP600125 promotes resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model[J]. Mol Immunol, 2015, 67(2 Pt B):311-316.
[5] Kwiecinska P, Roszkiewicz B, Lokociejewska M, et al. Elevated expression of NF-kappaB and Bcl-2 proteins in C2C12 myocytes during myogenesis is affected by PD98059, LY294002 and SB203580[J]. Cell Biol Int, 2005, 29(4):319-331.
[6] Rojewska E, Popiolek-Barczyk K, Kolosowska N, et al. PD98059 influences immune factors and enhances opioid analgesia in model of neuropathy[J]. PLoS One, 2015, 10(10):e0138583.
[7] Sun Y, Chen H, Ma S, et al. Administration of SB203580, a p38 MAPK inhibitor, reduced the expression of MMP9, and relieved neurologic severity in the experimental autoimmune neuritis (EAN) in rats[J]. Neurochem Res, 2015, 40(7):1410-1420.
[8] Sreekanth GP, Chuncharunee A, Sirimontaporn A, et al. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation[J]. PLoS One, 2016, 11(2):e0149486.
[9] Liu YC, Lerner UH, Teng YT. Cytokine responses against periodontal infection: protective and destructive roles[J]. Periodontol 2000, 2010, 52(1):163-206.
[10] Sugano N. Biological plaque control: novel therapeutic approach to periodontal disease[J]. J Oral Sci, 2012, 54(1):1-5.
[11] Nath P, Eynott P, Leung SY, et al. Potential role of c-JunNH2-terminal kinase in allergic airway inflammation and remodelling: effects of SP600125[J]. Eur J Pharmacol, 2005, 506(3):273-283.
[12] Alibolandi M, Sadeghi F, Abnous K, et al. The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model[J]. Eur J Pharm Biopharm, 2015, 94:521-531.
[13] Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery[J]. Pharmacol Ther, 2006, 112(3):630-648.
[14] Zhang Y, Zhang W, Johnston AH, et al. Comparison of the distribution pattern of PEG-b-PCL polymersomes delivered into the rat inner ear via different methods[J]. Acta Otolaryngol, 2011, 131(12):1249-1256.
[15] Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size[J]. Nat Nanotechnol, 2011, 6(12):815-823.
[16] Sindhura Reddy N, Sowmya S, Bumgardner JD, et al. Tetracycline nanoparticles loaded calcium sulfate composite beads for periodontal management[J]. Biochim Biophys Acta, 2014, 1840(6):2080-2090.
[17] Yang G, Wang J, Wang Y, et al. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy[J]. ACS nano, 2015, 9(2):1161-1174.
[18] Choi SH, Youn DY, Jo SM, et al. Micelle-mediated synthesis of single-crystalline beta(3C)-SiC fibers via emulsion electrospinning[J]. ACS Appl Mater Interfaces, 2011, 3(5):1385-1389.
[19] Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research[J]. J Control Release, 2013, 172(3):1075-1091.
[20] Xiang P, Wang SS, He M, et al. The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds[J]. Colloids Surfaces B Biointerfaces, 2018, 163:19-28.
[21] Takahashi Y, Yamamoto M, Tabata Y. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate[J]. Biomaterials, 2005, 26(23):4856-4865.
|