[1] Ng JH, Iyer NG, Tan MH, et al. Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study[J]. Head Neck, 2017, 39(2):297-304.
[2] Shield KD, Ferlay J, Jemal A, et al. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012[J]. CA Cancer J Clin, 2017, 67(1):51-64.
[3] Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma--an update[J]. CA Cancer J Clin, 2015, 65(5):401-421.
[4] Ambros V. MicroRNA pathways in flies and Worms: growth, death, fat, stress, and timing[J]. Cell, 2003, 113(6):673-676.[PubMed]
[5] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[6] Rupaimoole R, Calin GA, Lopez-Berestein G, et al. MiRNA deregulation in cancer cells and the tumor microenvironment[J]. Cancer Discov, 2016, 6(3):235-246.
[7] Karatas OF, Oner M, Abay A, et al. MicroRNAs in human tongue squamous cell carcinoma: From pathogenesis to therapeutic implications[J]. Oral Oncol, 2017, 67:124-130.
[8] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
[9] Ernani V, Saba NF. Oral cavity cancer: risk factors, pathology, and management[J]. Oncology, 2015, 89(4):187-195.
[10] Amit M, Yen TC, Liao CT, et al. Improvement in survival of patients with oral cavity squamous cell carcinoma: An international collaborative study[J]. Cancer, 2013, 119(24):4242-4248.
[11] Krishnan K, Steptoe AL, Martin HC, et al. MicroRNA-182-5p targets a network of genes involved in DNA repair[J]. RNA, 2013, 19(2):230-242.
[12] Bu WJ, Luo TY. Mir-1297 promotes cell proliferation of non-small cell lung cancer cells: involving in PTEN/Akt/Skp2 signaling pathway[J]. DNA Cell Biol, 2017, 36(11):976-982.
[13] Wang YN, Xue JF, Kuang HY, et al. MicroRNA-1297 inhibits the growth and metastasis of colorectal cancer by suppressing cyclin D2 expression[J]. DNA Cell Biol, 2017, 36(11): 991-999.
[14] Kumarswamy R, Mudduluru G, Ceppi P, et al. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer[J]. Int J Cancer, 2012, 130(9):2044-2053.
[15] Liu ZY, Tu KS, Liu QG. Effects of microRNA-30a on migration, invasion and prognosis of hepatocellular carcinoma[J]. FEBS Lett, 2014, 588(17):3089-3097.
[16] Sousa JF, Nam KT, Petersen CP, et al. MiR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach[J]. Gut, 2016, 65(6):914-924.
[17] Wang G, Zhang H, He H, et al. Up-regulation of microRNA in bladder tumor tissue is not common[J]. Int Urol Nephrol, 2010, 42(1):95-102.
[18] Lin ZY, Li JW, Wang YH, et al. Abnormal miRNA-30e expression is associated with breast cancer progression[J]. Clin Lab, 2016, 62(1-2): 121-128.
[19] John B, Enright AJ, Aravin A, et al. Human MicroRNA targets[J]. PLoS Biol, 2004, 2(11):e363.
[20] Ambros V. The functions of animal microRNAs[J]. Nature, 2004, 431(7006):350-355.
[21] Yu P, Liu K, Gao XX, et al. Transforming growth factor-β and bone morphogenetic protein 2 regulation of MicroRNA-200 family in chronic pancreatitis[J]. Pancreas, 2018, 47(2):252-256.
[22] Urbas R, Mayr C, Klieser E, et al. Relevance of MicroRNA200 family and MicroRNA205 for epithelial to mesenchymal transition and clinical outcome in biliary tract cancer patients[J]. Int J Mol Sci, 2016, 17(12):E2053.
[23] Bracken CP, Li XC, Wright JA, et al. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion[J]. EMBO J, 2014, 33(18):2040-2056.
[24] Wang CL, Cai LC, Liu J, et al. MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression[J]. Cell Physiol Biochem, 2017, 43(6):2405-2419.
[25] Fu J, Xu XJ, Kang L, et al. MiR-30a suppresses breast cancer cell proliferation and migration by targeting Eya2[J]. Biochem Biophys Res Commun, 2014, 445(2):314-319.
[26] Bockhorn J, Dalton R, Nwachukwu C, et al. MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11[J]. Nat Commun, 2013, 4:1393.
[27] Zhang N, Wang X, Huo Q, et al. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin[J]. Oncogene, 2014, 33(24):3119-3128.
[28] Shi X, Wang X. The role of MTDH/AEG-1 in the progression of cancer[J]. Int J Clin Exp Med, 2015, 8(4): 4795-4807.
[29] Ouzounova M, Vuong T, Ancey PB, et al. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells[J]. BMC Genomics, 2013, 14:139.
[30] Bockhorn J, Yee K, Chang YF, et al. MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion[J]. Breast Cancer Res Treat, 2013, 137(2):373-382.
[31] Cinpolat O, Unal ZN, Ismi O, et al. Comparison of microRNA profiles between benign and malignant salivary gland tumors in tissue, blood and saliva samples: a prospective, case-control study[J]. Braz J Otorhinolaryngol, 2017, 83(3):276-284.
[32] Chaw SY, Abdul Majeed A, Dalley AJ, et al. Epithelial to mesenchymal transition (EMT) biomarkers--E-cadherin, beta-catenin, APC and Vimentin--in oral squamous cell carcinogenesis and transformation[J]. Oral Oncol, 2012, 48(10):997-1006.
[33] Nagao T, Sato E, Inoue R, et al. Immunohistochemical analysis of salivary gland tumors: application for surgical pathology practice[J]. Acta Histochem Cytochem, 2012, 45(5):269-282.
|