[1] |
Seeman E. Periosteal bone formation—a neglected determinant of bone strength[J]. N Engl J Med, 2003, 349(4): 320-323
|
[2] |
Lin Z, Fateh A, Salem DM, et al. Periosteum: Biology and applications in craniofacial bone regeneration[J]. J Dent Res, 2014, 93(2): 109-116.
doi: 10.1177/0022034513506445
pmid: 24088412
|
[3] |
Debnath S, Yallowitz AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation[J]. Nature, 2018, 562(7725): 133-139.
|
[4] |
Duchamp de Lageneste O, Julien A, Abou-Khalil R, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin[J]. Nat Commun, 2018, 9(1): 773.
doi: 10.1038/s41467-018-03124-z
pmid: 29472541
|
[5] |
Ortinau LC, Wang H, Lei K, et al. Identification of functionally distinct Mx1+αSMA+ periosteal skeletal stem cells[J]. Cell Stem Cell, 2019, 25(6): 784-796.e5.
doi: S1934-5909(19)30458-8
pmid: 31809737
|
[6] |
Jeffery EC, Mann TLA, Pool JA, et al. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair[J]. Cell Stem Cell, 2022, 29(11): 1547-1561.e6.
doi: 10.1016/j.stem.2022.10.002
pmid: 36272401
|
[7] |
Ding Y, Mo C, Geng J, et al. Identification of periosteal osteogenic progenitors in jawbone[J]. J Dent Res, 2022, 101(9): 1101-1109.
|
[8] |
van Gastel N, Stegen S, Eelen G, et al. Lipid availability determines fate of skeletal progenitor cells via SOX9[J]. Nature, 2020, 579(7797): 111-117.
|
[9] |
Marcucio RS, Miclau T 3rd, Bahney CS. A shifting paradigm: Transformation of cartilage to bone during bone repair[J]. J Dent Res, 2023, 102(1): 13-20.
|
[10] |
Grayson WL, Bunnell BA, Martin E, et al. Stromal cells and stem cells in clinical bone regeneration[J]. Nat Rev Endocrinol, 2015, 11(3): 140-150.
doi: 10.1038/nrendo.2014.234
pmid: 25560703
|
[11] |
Oostinga D, Steverink JG, van Wijck AJM, et al. An understanding of bone pain: A narrative review[J]. Bone, 2020, 134: 115272.
|
[12] |
Bianco P, Robey PG. Skeletal stem cells[J]. Development, 2015, 142(6): 1023-1027.
doi: 10.1242/dev.102210
pmid: 25758217
|
[13] |
Leucht P, Kim JB, Amasha R, et al. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration[J]. Development, 2008, 135(17): 2845-2854.
doi: 10.1242/dev.023788
pmid: 18653558
|
[14] |
Liu Y, Ilinski A, Gerstenfeld LC, et al. Prx1 cell subpopulations identified in various tissues with diverse quiescence and activation ability following fracture and BMP2 stimulation[J]. Front Physiol, 2023, 14: 1106474.
|
[15] |
Gao B, Deng RX, Chai Y, et al. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration[J]. J Clin Invest, 2019, 129(6): 2578-2594.
doi: 10.1172/JCI98857
pmid: 30946695
|
[16] |
Xu JJ, Wang YY, Li Z, et al. PDGFRα reporter activity identifies periosteal progenitor cells critical for bone formation and fracture repair[J]. Bone Res, 2022, 10(1): 7.
doi: 10.1038/s41413-021-00176-8
pmid: 35075130
|
[17] |
Julien A, Perrin S, Martínez-Sarrà E, et al. Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury[J]. J Bone Miner Res, 2022, 37(8): 1545-1561.
|
[18] |
He XJ, Bougioukli S, Ortega B, et al. Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone[J]. Bone, 2017, 103: 12-19.
doi: S8756-3282(17)30206-5
pmid: 28627474
|
[19] |
Shi Y, He GX, Lee WC, et al. Gli1 identifies osteogenic progenitors for bone formation and fracture repair[J]. Nat Commun, 2017, 8(1): 2043.
doi: 10.1038/s41467-017-02171-2
pmid: 29230039
|
[20] |
Yu W, Zhong LL, Yao LT, et al. Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss[J]. J Clin Invest, 2021, 131(2): e140214.
|
[21] |
Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle[J]. Cell Tissue Res, 2007, 327(3): 449-462.
doi: 10.1007/s00441-006-0308-z
pmid: 17053900
|
[22] |
Owston HE, Ganguly P, Tronci G, et al. Colony formation, migratory, and differentiation characteristics of multipotential stromal cells (MSCs) from "clinically accessible" human periosteum compared to donor-matched bone marrow MSCs[J]. Stem Cells Int, 2019, 2019: 6074245.
|
[23] |
Xu YM, Zhuo J, Wang QS, et al. Site-specific periosteal cells with distinct osteogenic and angiogenic characteristics[J]. Clin Oral Investig, 2023, 27(12): 7437-7450.
|
[24] |
Bolander J, Chai YC, Geris L, et al. Early BMP, Wnt and Ca(2+)/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates[J]. Biomaterials, 2016, 86: 106-118.
doi: 10.1016/j.biomaterials.2016.01.059
pmid: 26901484
|
[25] |
Lee S, Remark LH, Josephson AM, et al. Notch-Wnt signal crosstalk regulates proliferation and differentiation of osteoprogenitor cells during intramembranous bone healing[J]. NPJ Regen Med, 2021, 6(1): 29.
doi: 10.1038/s41536-021-00139-x
pmid: 34050174
|
[26] |
Wang X, Matthews BG, Yu J, et al. PDGF modulates BMP2-induced osteogenesis in periosteal progenitor cells[J]. JBMR Plus, 2019, 3(5): e10127.
|
[27] |
Minear S, Leucht P, Miller S, et al. rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair[J]. J Bone Miner Res, 2010, 25(6): 1196-1207.
doi: 10.1002/jbmr.29
pmid: 20200943
|
[28] |
Julien A, Perrin S, Duchamp de Lageneste O, et al. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair[J]. Stem Cell Reports, 2020, 15(4): 955-967.
doi: 10.1016/j.stemcr.2020.08.005
pmid: 32916123
|
[29] |
van Gastel N, Stegen S, Stockmans I, et al. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2[J]. Stem Cells, 2014, 32(9): 2407-2418.
doi: 10.1002/stem.1783
pmid: 24989687
|
[30] |
Xia CJ, Ge QW, Fang L, et al. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1+ periosteal cells during fracture healing[J]. Cell Prolif, 2020, 53(11): e12904.
|
[31] |
Liu YY, Lan DP, Gao JY, et al. Guided bone regeneration for peri-implant augmentation: A retrospective study comparing two surgical techniques with a mean follow-up of 26 months[J]. Clin Oral Implants Res, 2024, 35(5): 573-584.
|
[32] |
Al Maruf DSA, Ghosh YA, Xin H, et al. Hydrogel: A potential material for bone tissue engineering repairing the segmental mandibular defect[J]. Polymers (Basel), 2022, 14(19): 4186.
|
[33] |
Okuda K, Kawase T, Nagata M, et al. Tissue-engineered cultured periosteum sheet application to treat infrabony defects: Case series and 5-year results[J]. Int J Periodontics Restorative Dent, 2013, 33(3): 281-287.
doi: 10.11607/prd.1545
pmid: 23593621
|
[34] |
Chen DY, Zhang XL, He YH, et al. Co-culturing mesenchymal stem cells from bone marrow and periosteum enhances osteogenesis and neovascularization of tissue-engineered bone[J]. J Tissue Eng Regen Med, 2012, 6(10): 822-832.
doi: 10.1002/term.489
pmid: 22072318
|
[35] |
Kudva AK, Luyten FP, Patterson J. RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells[J]. J Biomed Mater Res A, 2018, 106(1): 33-42.
doi: 10.1002/jbm.a.36208
pmid: 28875574
|
[36] |
Zhao XK, Zhuang Y, Cao YJ, et al. Electrospun biomimetic periosteum capable of controlled release of multiple agents for programmed promoting bone regeneration[J]. Adv Healthc Mater, 2024, 13(12): e2303134.
|
[37] |
Zhu J, Zhang S, Jin S, et al. Endochondral repair of jawbone defects using periosteal cell spheroids[J]. J Dent Res, 2024, 103(1): 31-41.
|