[1] |
Zhao HW, Liu SJ, Wei Y, et al. Multiscale engineered artificial tooth enamel[J]. Science, 2022, 375(6580): 551-556.
doi: 10.1126/science.abj3343
pmid: 35113708
|
[2] |
Wegst UGK, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nat Mater, 2015, 14(1): 23-36.
doi: 10.1038/nmat4089
pmid: 25344782
|
[3] |
Mao LB, Gao HL, Yao HB, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science, 2016, 354(6308): 107-110.
|
[4] |
Du YY, Guo JL, Wang JL, et al. Hierarchically designed bone scaffolds: From internal cues to external stimuli[J]. Biomaterials, 2019, 218: 119334.
|
[5] |
Reznikov N, Bilton M, Lari L, et al. Fractal-like hierarchical organization of bone begins at the nanoscale[J]. Science, 2018, 360(6388): eaao2189.
|
[6] |
于露, 李昊, 高丽兰, 等. 骨组织的多层次生物力学特性及本构关系[J]. 医用生物力学, 2019, 34(4): 434-439.
|
[7] |
李振珺, 齐社宁, 赵红斌, 等. 凹凸棒石/羟基磷灰石/聚己内酯/胶原构建的骨修复材料[J]. 中国组织工程研究, 2017, 21(2): 202-208.
|
[8] |
Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering[J]. Nat Rev Mater, 2020, 5(8): 584-603.
|
[9] |
Lekhavadhani S, Shanmugavadivu A, Selvamurugan N. Role and architectural significance of porous chitosan-based scaffolds in bone tissue engineering[J]. Int J Biol Macromol, 2023, 251: 126238.
|
[10] |
Shibahara K, Hayashi K, Nakashima Y, et al. Effects of channels and micropores in honeycomb scaffolds on the reconstruction of segmental bone defects[J]. Front Bioeng Biotechnol, 2022, 10: 825831.
|
[11] |
Sgarminato V, Tonda-Turo C, Ciardelli G. Reviewing recently developed technologies to direct cell activity through the control of pore size: From the macro- to the nanoscale[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(4): 1176-1185.
|
[12] |
Ganewatta MS, Wang ZK, Tang CB. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials[J]. Nat Rev Chem, 2021, 5(11): 753-772.
doi: 10.1038/s41570-021-00325-x
pmid: 36238089
|
[13] |
Huang W, Restrepo D, Jung JY, et al. Multiscale toughening mechanisms in biological materials and bioinspired designs[J]. Adv Mater, 2019, 31(43): e1901561.
|
[14] |
周安琪, 唐渝菲, 吴秉峰, 等. 骨膜组织工程设计:共性与个性的结合[J]. 中国组织工程研究, 2021, 25(22): 3551-3557.
|
[15] |
Jin SS, He DQ, Luo D, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration[J]. ACS Nano, 2019, 13(6): 6581-6595.
|
[16] |
Zhang M, Lin RC, Wang X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration[J]. Sci Adv, 2020, 6(12): eaaz6725.
|
[17] |
Wang HC, Tian JJ, Jiang YX, et al. A 3D biomimetic optoelectronic scaffold repairs cranial defects[J]. Sci Adv, 2023, 9(7): eabq7750.
|
[18] |
Chen JQ, Chen JS, Zhu ZL, et al. Drug-loaded and anisotropic wood-derived hydrogel periosteum with super antibacterial, anti-inflammatory, and osteogenic activities[J]. ACS Appl Mater Interfaces, 2022, 14(45): 50485-50498.
|
[19] |
Chen JQ, He XH, Sun TY, et al. Highly elastic and anisotropic wood-derived composite scaffold with antibacterial and angiogenic activities for bone repair[J]. Adv Healthc Mater, 2023, 12(21): e2300122.
|
[20] |
Wang XF, Fang J, Zhu WW, et al. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair[J]. Adv Funct Materials, 2021, 31(20): 2010068.
|
[21] |
Liu JM, Yu P, Wang DQ, et al. Wood-derived hybrid scaffold with highly anisotropic features on mechanics and liquid transport toward cell migration and alignment[J]. ACS Appl Mater Interfaces, 2020, 12(15): 17957-17966.
|
[22] |
Chen SM, Zhang SC, Gao HL, et al. Mechanically robust bamboo node and its hierarchically fibrous structural design[J]. Natl Sci Rev, 2022, 10(2): nwac195.
|
[23] |
Xue JM, Ma HS, Song EH, et al. Bamboo-based biomaterials for cell transportation and bone integration[J]. Adv Healthc Mater, 2022, 11(14): e2200287.
|