| [1] |
Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations[J]. Aust Dent J, 2011, 56(Suppl 1): 97-106.
|
| [2] |
Blatz MB, Conejo J. The current state of chairside digital dentistry and materials[J]. Dent Clin North Am, 2019, 63(2): 175-197.
doi: S0011-8532(18)30091-0
pmid: 30825985
|
| [3] |
Lee SJ, Poon J, Jindarojanakul A, et al. Artificial intelligence in dentistry: Exploring emerging applications and future prospects[J]. J Dent, 2025, 155: 105648.
|
| [4] |
Meghil MM, Rajpurohit P, Awad ME, et al. Artificial intelligence in dentistry[J]. Dent Rev, 2022, 2(1): 100009.
|
| [5] |
Steels L, Lopez de Mantaras R. The Barcelona declaration for the proper development and usage of artificial intelligence in Europe[J]. AI Commun, 2018, 31(6): 485-494.
|
| [6] |
Glick A, Clayton M, Angelov N, et al. Impact of explainable artificial intelligence assistance on clinical decision-making of novice dental clinicians[J]. JAMIA Open, 2022, 5(2): ooac031.
|
| [7] |
Park WJ, Park JB. History and application of artificial neural networks in dentistry[J]. Eur J Dent, 2018, 12(4): 594-601.
doi: 10.4103/ejd.ejd_325_18
pmid: 30369809
|
| [8] |
Lee JH, Jeong SN. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study[J]. Medicine, 2020, 99(26): e20787.
|
| [9] |
Kong HJ, Kim YL. Application of artificial intelligence in dental crown prosthesis: A scoping review[J]. BMC Oral Health, 2024, 24(1): 937.
|
| [10] |
Sadowsky SJ. An overview of treatment considerations for esthetic restorations: A review of the literature[J]. J Prosthet Dent, 2006, 96(6): 433-442.
doi: 10.1016/j.prosdent.2006.09.018
pmid: 17174661
|
| [11] |
Tabatabaian F, Beyabanaki E, Alirezaei P, et al. Visual and digital tooth shade selection methods, related effective factors and conditions, and their accuracy and precision: A literature review[J]. J Esthet Restor Dent, 2021, 33(8): 1084-1104.
doi: 10.1111/jerd.12816
pmid: 34498789
|
| [12] |
Geier J, Hudák M. Changing the Chevreul illusion by a background luminance ramp: Lateral inhibition fails at its traditional stronghold—a psychophysical refutation[J]. PLoS One, 2011, 6(10): e26062.
|
| [13] |
王胤霖, 张馨月, 李明星, 等. 前牙瓷贴面美学修复体比色的影响因素[J]. 口腔医学, 2024, 44(3): 203-208.
|
| [14] |
Dagg H, O'Connell B, Claffey N, et al. The influence of some different factors on the accuracy of shade selection[J]. J Oral Rehabil, 2004, 31(9): 900-904.
doi: 10.1111/j.1365-2842.2004.01310.x
pmid: 15369473
|
| [15] |
Wei JQ, Peng MD, Li Q, et al. Evaluation of a novel computer color matching system based on the improved back-propagation neural network model[J]. J Prosthodont, 2018, 27(8): 775-783.
doi: 10.1111/jopr.12561
pmid: 27860023
|
| [16] |
Kim M, Kim B, Park B, et al. A digital shade-matching device for dental color determination using the support vector machine algorithm[J]. Sensors, 2018, 18(9): 3051.
|
| [17] |
Yang JW, Hao ZZ, Xu JN, et al. Fusion machine learning model predicts CAD-CAM ceramic colors and the corresponding minimal thicknesses over various clinical backgrounds[J]. Dent Mater, 2024, 40(2): 285-296.
doi: 10.1016/j.dental.2023.11.013
pmid: 37996303
|
| [18] |
Shetty S, Gali S, Augustine D, et al. Artificial intelligence systems in dental shade-matching: A systematic review[J]. J Prosthodont, 2024, 33(6): 519-532.
|
| [19] |
Lee S, Kim JE. Evaluating the precision of automatic segmentation of teeth, gingiva and facial landmarks for 2D digital smile design using real-time instance segmentation network[J]. J Clin Med, 2022, 11(3): 852.
|
| [20] |
Li MX, Xu XY, Punithakumar K, et al. Automated integration of facial and intra-oral images of anterior teeth[J]. Comput Biol Med, 2020, 122: 103794.
|
| [21] |
Lee S, Jin G, Park JH, et al. Evaluation metric of smile classification by peri-oral tissue segmentation for the automation of digital smile design[J]. J Dent, 2024, 145: 104871.
|
| [22] |
Khaled Ali GA, Abdelbadei KA, Essam M, et al. Smile. AI: A deep learning system for digital smile design[C]// 2023 Eleventh International Conference on Intelligent Computing and Information Systems (ICICIS). November 21-23, 2023, Cairo, Egypt: IEEE, 2023: 568-573.
|
| [23] |
Coachman C, Calamita MA, Sesma N. Dynamic documentation of the smile and the 2D/3D digital smile design process[J]. Int J Periodontics Restorative Dent, 2017, 37(2): 183-193.
doi: 10.11607/prd.2911
pmid: 28196157
|
| [24] |
Blatz MB, Chiche G, Bahat O, et al. Evolution of aesthetic dentistry[J]. J Dent Res, 2019, 98(12): 1294-1304.
doi: 10.1177/0022034519875450
pmid: 31633462
|
| [25] |
Cheung K, Cheung W, Liu YS, et al. Establishment of a 3D esthetic analysis workflow on 3D virtual patient and preliminary evaluation[J]. BMC Oral Health, 2024, 24(1): 328.
doi: 10.1186/s12903-024-04085-0
pmid: 38475773
|
| [26] |
Mourgues T, González-Olmo MJ, Huanca Ghislanzoni L, et al. Artificial intelligence in aesthetic dentistry: Is treatment with aligners clinically realistic[J]. J Clin Med, 2024, 13(20): 6074.
|
| [27] |
Mehl A, Blanz V. New procedure for fully automatic occlusal surface reconstruction by means of a biogeneric tooth model[J]. Int J Comput Dent, 2005, 8(1): 13-25.
pmid: 15892521
|
| [28] |
Bohner LOL, Neto PT, Ahmed AS, et al. CEREC chairside system to register and design the occlusion in restorative dentistry: A systematic literature review[J]. J Esthet Restor Dent, 2016, 28(4): 208-220.
doi: 10.1111/jerd.12226
pmid: 27312653
|
| [29] |
徐昕恺, 陈虎, 王相, 等. 口腔数智仿生诊疗技术研究应用进展[J]. 中国实用口腔科杂志, 2024, 17(4): 406-413.
|
| [30] |
Broll A, Goldhacker M, Hahnel S, et al. Generative deep learning approaches for the design of dental restorations: A narrative review[J]. J Dent, 2024, 145: 104988.
|
| [31] |
Bobeică O, Iorga D. Artificial neural networks development in prosthodontics—a systematic mapping review[J]. J Dent, 2024, 151: 105385.
|
| [32] |
Çakmak G, Cho JH, Choi J, et al. Can deep learning-designed anterior tooth-borne crown fulfill morphologic, aesthetic, and functional criteria in clinical practice[J]. J Dent, 2024, 150: 105368.
|
| [33] |
Jahangiri L, Wahlers C, Hittelman E, et al. Assessment of sensitivity and specificity of clinical evaluation of cast restoration marginal accuracy compared to stereomicroscopy[J]. J Prosthet Dent, 2005, 93(2): 138-142.
doi: 10.1016/j.prosdent.2004.11.007
pmid: 15674223
|
| [34] |
Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques[J]. J Prosthet Dent, 2018, 119(4): 545-551.
doi: S0022-3913(17)30488-2
pmid: 28967399
|
| [35] |
Mai HN, Han JS, Kim HS, et al. Reliability of automatic finish line detection for tooth preparation in dental computer-aided software[J]. J Prosthodont Res, 2023, 67(1): 138-143.
|
| [36] |
Zhang B, Dai N, Tian SK, et al. The extraction method of tooth preparation margin line based on S-Octree CNN[J]. Int J Numer Method Biomed Eng, 2019, 35(10): e3241.
|
| [37] |
张贝, 戴宁, 田素坤, 等. 结合稀疏八叉树卷积神经网络的牙齿预备体颈缘线提取方法[J]. 计算机辅助设计与图形学学报, 2019, 31(12): 2129-2135.
|
| [38] |
Choi J, Ahn J, Park JM. Deep learning-based automated detection of the dental crown finish line: An accuracy study[J]. J Prosthet Dent, 2024, 132(6): 1286.e1-1286.e9.
|
| [39] |
Ferraris F. Posterior indirect adhesive restorations (PIAR): Preparation designs and adhesthetics clinical protocol[J]. Int J Esthet Dent, 2017, 12(4): 482-502.
pmid: 28983533
|
| [40] |
Tian SK, Wang MH, Yuan FL, et al. Efficient computer-aided design of dental inlay restoration: A deep adversarial framework[J]. IEEE Trans Med Imag, 2021, 40(9): 2415-2427.
|
| [41] |
Farook TH, Ahmed S, Jamayet NB, et al. Computer-aided design and 3-dimensional artificial/convolutional neural network for digital partial dental crown synthesis and validation[J]. Sci Rep, 2023, 13: 1561.
doi: 10.1038/s41598-023-28442-1
pmid: 36709380
|
| [42] |
Hwang JJ, Azernikov S, Efros AA, et al. Learning beyond human expertise with generative models for dental restorations[J/OL]. arXiv, 2018: 1804.00064[2024-04-23]. https://arxiv.org/abs/1804.00064.
|
| [43] |
Yuan FL, Dai N, Tian SK, et al. Personalized design technique for the dental occlusal surface based on conditional generative adversarial networks[J]. Int J Numer Meth Biomed Eng, 2020, 36(5): e3321.
|
| [44] |
Tian SK, Huang RK, Li ZY, et al. A dual discriminator adversarial learning approach for dental occlusal surface reconstruction[J]. J Healthc Eng, 2022, 2022(1): 1933617.
|
| [45] |
Tian SK, Wang MH, Dai N, et al. DCPR-GAN: Dental crown prosthesis restoration using two-stage generative adversarial networks[J]. IEEE J Biomed Health Inform, 2022, 26(1): 151-160.
|
| [46] |
Isola P, Zhu JY, Zhou TH, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 5967-5976.
|
| [47] |
Wu JJ, Zhang CK, Xue TF, et al. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[C]// 30th Conference on Neural Information Processing Systems (NIPS 2016). Barcelona, Spain: Curran Associates Inc., 2016: 82-90.
|
| [48] |
Chau RCW, Hsung RT, McGrath C, et al. Accuracy of artificial intelligence-designed single-molar dental prostheses: A feasibility study[J]. J Prosthet Dent, 2024, 131(6): 1111-1117.
|
| [49] |
Ding H, Cui ZM, Maghami E, et al. Morphology and mechanical performance of dental crown designed by 3D-DCGAN[J]. Dent Mater, 2023, 39(3): 320-332.
|
| [50] |
中华口腔医学会口腔修复学专业委员会. 椅旁计算机辅助设计与辅助制作全瓷修复技术指南[J]. 中华口腔医学杂志, 2022, 57(10): 992-996.
|
| [51] |
Feng Y, Tao BX, Fan JC, et al. 3D reconstruction for maxillary anterior tooth crown based on shape and pose estimation networks[J]. Int J Comput Assist Radiol Surg, 2023, 18(8): 1405-1416.
doi: 10.1007/s11548-023-02841-1
pmid: 36754949
|
| [52] |
Chen D, Yu MQ, Li QJ, et al. Precise tooth design using deep learning-based templates[J]. J Dent, 2024, 144: 104971.
|
| [53] |
Liu CM, Lin WC, Lee SY. Evaluation of the efficiency, trueness, and clinical application of novel artificial intelligence design for dental crown prostheses[J]. Dent Mater, 2024, 40(1): 19-27.
|
| [54] |
Chen YN, Lee JKY, Kwong G, et al. Morphology and fracture behavior of lithium disilicate dental crowns designed by human and knowledge-based AI[J]. J Mech Behav Biomed Mater, 2022, 131: 105256.
|
| [55] |
Cho JH, Yi Y, Choi J, et al. Time efficiency, occlusal morphology, and internal fit of anatomic contour crowns designed by dental software powered by generative adversarial network: A comparative study[J]. J Dent, 2023, 138: 104739.
|
| [56] |
Cho JH, Çakmak G, Yi Y, et al. Tooth morphology, internal fit, occlusion and proximal contacts of dental crowns designed by deep learning-based dental software: A comparative study[J]. J Dent, 2024, 141: 104830.
|
| [57] |
Macrì M, D'Albis V, D'Albis G, et al. The role and applications of artificial intelligence in dental implant planning: A systematic review[J]. Bioengineering, 2024, 11(8): 778.
|
| [58] |
Samaranayake L, Tuygunov N, Schwendicke F, et al. The transformative role of artificial intelligence in dentistry: A comprehensive overview. Part 1: Fundamentals of AI, and its contemporary applications in dentistry[J]. Int Dent J, 2025, 75(2): 383-396.
|
| [59] |
Elgarba BM, Fontenele RC, Tarce M, et al. Artificial intelligence serving pre-surgical digital implant planning: A scoping review[J]. J Dent, 2024, 143: 104862.
|
| [60] |
Mangano FG, Admakin O, Lerner H, et al. Artificial intelligence and augmented reality for guided implant surgery planning: A proof of concept[J]. J Dent, 2023, 133: 104485.
|
| [61] |
Zhang CN, Fan LF, Zhang SS, et al. Deep learning based dental implant failure prediction from periapical and panoramic films[J]. Quant Imaging Med Surg, 2023, 13(2): 935-945.
|
| [62] |
Oh S, Kim YJ, Kim J, et al. Deep learning-based prediction of osseointegration for dental implant using plain radiography[J]. BMC Oral Health, 2023, 23(1): 208.
doi: 10.1186/s12903-023-02921-3
pmid: 37031221
|
| [63] |
Huang NN, Liu P, Yan YL, et al. Predicting the risk of dental implant loss using deep learning[J]. J Clin Periodontol, 2022, 49(9): 872-883.
|
| [64] |
Gui HJ, Yang HW, Zhang SL, et al. Mirroring tool: The simplest computer-aided simulation technology[J]. J Craniofacial Surg, 2015, 26(7): 2115-2119.
|
| [65] |
Yao BC, He Y, Jie BM, et al. Reconstruction of bilateral post-traumatic midfacial defects assisted by three-dimensional craniomaxillofacial data in normal Chinese people-a preliminary study[J]. J Oral Maxillofac Surg, 2019, 77(11): 2302.e1-2302.e13.
|
| [66] |
Raith S, Wolff S, Steiner T, et al. Planning of mandibular reconstructions based on statistical shape models[J]. Int J Comput Assist Radiol Surg, 2017, 12(1): 99-112.
doi: 10.1007/s11548-016-1451-y
pmid: 27393280
|
| [67] |
熊宇韬, 徐蕾, 曾维, 等. 基于深度学习的上颌骨缺损虚拟重建与临床验证[J]. 中华口腔医学杂志, 2022, 57(10): 1029-1035.
|
| [68] |
Xiong YT, Zeng W, Xu L, et al. Virtual reconstruction of midfacial bone defect based on generative adversarial network[J]. Head Face Med, 2022, 18(1): 19.
|
| [69] |
Zhong CL, Xiong YT, Tang W, et al. A stage-wise residual attention generation adversarial network for mandibular defect repairing and reconstruction[J]. Int J Neural Syst, 2024, 34(7): 2450033.
|
| [70] |
Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models[J]. Biomaterials, 2022, 287: 121639.
|
| [71] |
Prendergast ME, Burdick JA. Recent advances in enabling technologies in 3D printing for precision medicine[J]. Adv Mater, 2020, 32(13): e1902516.
|
| [72] |
Zhang ZR, Zhou XH, Fang YC, et al. AI-driven 3D bioprinting for regenerative medicine: From bench to bedside[J]. Bioact Mater, 2025, 45: 201-230.
doi: 10.1016/j.bioactmat.2024.11.021
pmid: 39651398
|
| [73] |
An J, Chua CK, Mironov V. Application of machine learning in 3D bioprinting: Focus on development of big data and digital twin[J]. Int J Bioprint, 2021, 7(1): 342.
|